From b7671057ca59512f1cb9f929fc0bfd037db267ec Mon Sep 17 00:00:00 2001 From: Josia Pietsch Date: Tue, 5 Dec 2023 17:14:40 +0100 Subject: [PATCH] tutorial --- inputs/lecture_09.tex | 1 + inputs/lecture_12.tex | 2 +- inputs/tutorial_07.tex | 93 ++++++++++++++++++++++++++++++++++++++++++ 3 files changed, 95 insertions(+), 1 deletion(-) create mode 100644 inputs/tutorial_07.tex diff --git a/inputs/lecture_09.tex b/inputs/lecture_09.tex index f79c2aa..69ae93b 100644 --- a/inputs/lecture_09.tex +++ b/inputs/lecture_09.tex @@ -43,6 +43,7 @@ We will see that not every analytic set is Borel. \end{remark} \begin{theorem} + \label{thm:borel} Let $X$ be Polish, $\emptyset \neq A \subseteq X$. Then the following are equivalent: diff --git a/inputs/lecture_12.tex b/inputs/lecture_12.tex index 6f88217..24466fa 100644 --- a/inputs/lecture_12.tex +++ b/inputs/lecture_12.tex @@ -51,7 +51,7 @@ \begin{theorem} \label{thm:lec12:1} Suppose that $A \subseteq \cN$ is analytic. - Then there is $f\colon \cN \to \Tr$ + Then there is $f\colon \cN \to \Tr$\todo{Borel?} such that $x \in A \iff f(x)$ is ill-founded. \end{theorem} For the proof we need some prerequisites: diff --git a/inputs/tutorial_07.tex b/inputs/tutorial_07.tex new file mode 100644 index 0000000..634edb5 --- /dev/null +++ b/inputs/tutorial_07.tex @@ -0,0 +1,93 @@ +\tutorial{07}{2023-12-05}{} +% 17 / 20 + +\subsection{Exercise 2} + +Recall \autoref{thm:analytic}. + +Let $(A_i)_{i < \omega}$ be analytic subsets of a Polish space $X$. + +$\bigcap_i A_i$ is $\Sigma^1_1$: + +% Let $Y_i$ be Polish such that $f_i(Y_i) = A_i$. +% Let $Y \coloneqq \coprod Y_i$, $f = \coprod f_i$ and $Z = \prod Y_i$. +% Note that $Y$ and $Z$ are Polish. +% We can embed $Z$ into $Y^{\N}$. +% +% Define a tree $T$ on $Y$ as follows: +% $(y_0, \ldots, y_n) \in T$ iff +% \begin{itemize} +% \item $\forall 0 \le i \le n.~ y_i \in Y_i$ and +% \item $\forall i,j .~ f(y_i) = f(y_j)$. +% \end{itemize} +% +% Then $[T]$ consists of sequences $y = (y_n)$ +% such that $\forall j \in \N.~f(y) \in \im (f_j)$, +% so $\forall y \in [T].~f(y) \in \bigcap_{i \in \N} \im(f_i) = \bigcap_{i \in \N} A_i$. +% $[T] \subseteq i(Z) \subseteq Y^{\N}$, +% and $[T]$ is closed. +% +% +% Other solution: + +Let $Z = \prod Y_i$ +and let $D \subseteq Z$ +be defined by +\[ +D \coloneqq \{(y_n) : f_i(y_i) = f_j(y_j) ~ \forall i,j\}. +\] +$D$ is closed, +at it is the preimage of the diagonal +under $Z \xrightarrow{(f_0,f_1,\ldots)} X^{\N}$. +Then $\bigcap A_i$ is the image of $D$ +under $Z \xrightarrow{(y_n) \mapsto f_0(y_0)} X$. + +\paragraph{Other solution} +Let $F_n \subseteq X \times \cN$ be closed, +and $C \subseteq X \times \cN^{\N}$ defined by +\[ +C \coloneqq \{(x,(y^{(n)}) ) : \forall n.~(x, y^{(n)}) \in F_n\}. +\] +$C$ is closed +and $\bigcap A_i = \proj_X(C)$. + +\subsection{Exercise 3} + +\begin{itemize} + \item Make $X$ zero dimensional preserving the Borel structure. + \item \todo{Find a countable clopen base} + \item +\end{itemize} + + +\subsection{Exercise 4} + + +Proof of Schröder-Bernstein: + +Let $X_0 \coloneqq X$, $Y_0 \coloneqq Y$ +and define $X_{i+1} \coloneqq g(Y_i)$, $Y_{i+1 } \coloneqq g(X_i)$. +We have $X_{i+1} \subseteq X_i$ and similarly for $Y_i$. +$f$ and $g$ are bijections between +$X_\omega \coloneqq \bigcap X_i$ and $Y_\omega \coloneqq \bigcap Y_i$. + +% https://q.uiver.app/#q=WzAsMTgsWzAsMCwiWCBcXHNldG1pbnVzIFhfXFxvbWVnYSJdLFswLDEsIllcXHNldG1pbnVzIFlfXFxvbWVnYSJdLFsxLDAsIj0iXSxbMSwxLCI9Il0sWzIsMCwiKFhfMCBcXHNldG1pbnVzIFhfMSkiXSxbMiwxLCIoWV8wIFxcc2V0bWludXMgWV8xKSJdLFs0LDEsIihZXzAgXFxzZXRtaW51cyBZXzEpIl0sWzYsMSwiKFlfMCBcXHNldG1pbnVzIFlfMSkiXSxbNCwwLCIoWF8wIFxcc2V0bWludXMgWF8xKSJdLFs2LDAsIihYXzAgXFxzZXRtaW51cyBYXzEpIl0sWzcsMCwiXFxjZG90cyJdLFs3LDEsIlxcY2RvdHMiXSxbMywwLCJcXGN1cCJdLFszLDEsIlxcY3VwIl0sWzUsMCwiXFxjdXAiXSxbNSwxLCJcXGN1cCJdLFs4LDFdLFs4LDBdLFs0LDYsImYiLDIseyJsYWJlbF9wb3NpdGlvbiI6NzB9XSxbNSw4LCJnIiwwLHsibGFiZWxfcG9zaXRpb24iOjEwfV0sWzksMTYsImYiLDAseyJsYWJlbF9wb3NpdGlvbiI6ODB9XSxbNywxNywiZyIsMCx7ImxhYmVsX3Bvc2l0aW9uIjoxMH1dXQ== +\[\begin{tikzcd} + {X \setminus X_\omega} & {=} & {(X_0 \setminus X_1)} & \cup & {(X_0 \setminus X_1)} & \cup & {(X_0 \setminus X_1)} & \cdots & {} \\ + {Y\setminus Y_\omega} & {=} & {(Y_0 \setminus Y_1)} & \cup & {(Y_0 \setminus Y_1)} & \cup & {(Y_0 \setminus Y_1)} & \cdots & {} + \arrow["f"'{pos=0.7}, from=1-3, to=2-5] + \arrow["g"{pos=0.1}, from=2-3, to=1-5] + \arrow["f"{pos=0.8}, from=1-7, to=2-9] + \arrow["g"{pos=0.1}, from=2-7, to=1-9] +\end{tikzcd}\] + + +By \autoref{thm:lusinsouslin} +the injective image via a Borel set of a Borel set is Borel. + +\autoref{thm:lusinsouslin} also gives that the inverse +of a bijective Borel map is Borel. + + + +