This commit is contained in:
parent
93976c4821
commit
7746866373
6 changed files with 18 additions and 19 deletions
|
@ -93,8 +93,8 @@ where $X$ is a metrizable, usually second countable space.
|
|||
\end{proof}
|
||||
\begin{remark}
|
||||
Since $2^{\omega}$ embeds
|
||||
into any uncountable polish space $Y$
|
||||
such that the image is closed,
|
||||
into any uncountable polish space $Y$,
|
||||
% such that the image is closed,
|
||||
we can replace $2^{\omega}$ by $Y$
|
||||
in the statement of the theorem.%
|
||||
\footnote{By definition of the subspace topology
|
||||
|
|
|
@ -59,14 +59,14 @@
|
|||
there is a unique $x \in X$,
|
||||
such that
|
||||
\[
|
||||
(\cU_n) (x_n \in G)
|
||||
(\cU n) (x_n \in G)
|
||||
\]
|
||||
for every neighbourhood%
|
||||
\footnote{$G \subseteq X$ is a neighbourhood iff $x \in \inter G$.}
|
||||
$G$ of $x$.
|
||||
\end{lemma}
|
||||
\begin{notation}
|
||||
In this case we write $x = \cU-\lim_n x_n$.
|
||||
In this case we write $x = \ulim{\cU}_n x_n$.
|
||||
\end{notation}
|
||||
\begin{refproof}{lem:ultrafilterlimit}[sketch]
|
||||
Whenever we write $X = Y \cup Z$
|
||||
|
@ -101,13 +101,13 @@ This gives an operation on principal ultrafilters
|
|||
(we identify $n \in \N$ with the corresponding principal filter).
|
||||
We want to extend this to all of $\beta\N$.
|
||||
Fix the first argument to get a function $\N \to \N, n \mapsto k+n$.
|
||||
For $\cU \in \beta\N$ consider $\cU-\lim_n (k+n)$.
|
||||
For $\cU \in \beta\N$ consider $\ulim{\cU}_n (k+n)$.
|
||||
So for a fixed $k \in \N$ we get $k+ \cdot \colon\beta\N \to \beta\N$,
|
||||
i.e.~$+ \colon \N \times \beta\N \to \beta\N$.
|
||||
Fixing the second coordinate to be $\cV \in \beta\N$,
|
||||
we get a function $+\cV \colon \N \to \beta\N$.
|
||||
For $ \cU \in \beta\N$
|
||||
consider $\cU-\lim_n n + \cV$.
|
||||
consider $\ulim{\cU}_n n + \cV$.
|
||||
This gives $+ \colon \beta\N \times \beta\N \to \beta\N$.
|
||||
% TODO ?
|
||||
|
||||
|
@ -130,7 +130,7 @@ and let $T \colon X \to X$ be continuous.%
|
|||
but not a $\Z$-action.}
|
||||
|
||||
For any $\cU \in \beta\N$, we define $T^{\cU}$ by
|
||||
$T^\cU(x) \coloneqq \cU-\lim_n T^n(x)$ for $x \in X$.
|
||||
$T^\cU(x) \coloneqq \ulim{\cU}_n T^n(x)$ for $x \in X$.
|
||||
|
||||
For fixed $x$, the map $\cU \mapsto T^{\cU}(x)$ is continuous.
|
||||
|
||||
|
@ -165,9 +165,9 @@ is not necessarily continuous.
|
|||
\end{fact}
|
||||
\begin{proof}
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
T^{\cU + \cV}(x) &=& (\cU + \cV)-\lim_k T^k(x)\\
|
||||
&=& \cU-\lim_m \cV-\lim_n T^{m+n}(x)\\
|
||||
&\overset{T^m \text{ continuous}}{=}& \cU-\lim_m T^m (\cV-\lim_n T^n(x))\\
|
||||
T^{\cU + \cV}(x) &=& \ulim{(\cU + \cV)}_k T^k(x)\\
|
||||
&=& \ulim{\cU}_m \ulim{\cV}_n T^{m+n}(x)\\
|
||||
&\overset{T^m \text{ continuous}}{=}& \ulim{\cU}_m T^m (\ulim{\cV}_n T^n(x))\\
|
||||
&=& T^\cU(T^\cV(x)).
|
||||
\end{IEEEeqnarray*}
|
||||
\end{proof}
|
||||
|
|
|
@ -86,7 +86,7 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
For every compact Hausdorff space $X$,
|
||||
a sequence $(x_n)$ in $X$,
|
||||
and $\cU \in \beta\N$,
|
||||
we have that $\cU-\lim_n x_n = x$
|
||||
we have that $\ulim{\cU}_n x_n = x$
|
||||
exists and is unique,
|
||||
i.e.~for all $x \in G \overset{\text{open}}{\subseteq} X$
|
||||
we have $\{n \in \N : x_n \in G\} \in \cU$.
|
||||
|
@ -110,7 +110,7 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
\end{IEEEeqnarray*}
|
||||
since $B_1 \cup \ldots \cup B_m \in \cU \iff \exists i < m.~B_i \in \cU$.
|
||||
|
||||
It is clear that $\cU-\lim_n x_n$
|
||||
It is clear that $\ulim{\cU}_n x_n$
|
||||
is unique, since $X$ is Hausdorff.
|
||||
\end{proof}
|
||||
|
||||
|
@ -123,7 +123,7 @@ Let $\beta\N$ denote the set of ultrafilters on $\N$.
|
|||
Let
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
\tilde{f}\colon \beta\N &\longrightarrow & X \\
|
||||
\cU &\longmapsto & \cU-\lim_n f(n).
|
||||
\cU &\longmapsto & \ulim{\cU}_n f(n).
|
||||
\end{IEEEeqnarray*}
|
||||
\todo{Exercise: Check that $\tilde{f}$ is continuous.}
|
||||
|
||||
|
|
|
@ -189,7 +189,7 @@ we need the following:
|
|||
(\cV n) T^n(x) \in \underbrace{T^{-k}(\overbrace{G}^{\text{closed}})}_{\text{closed}}.
|
||||
\]
|
||||
|
||||
Therefore $\cV-\lim_n T^n(x) \in T^{-k}(G)$.
|
||||
Therefore $\ulim{\cV}_n T^n(x) \in T^{-k}(G)$.
|
||||
So $T^k(T^\cV(x)) \in G \subseteq G_0$.
|
||||
|
||||
|
||||
|
|
|
@ -30,7 +30,7 @@
|
|||
\]
|
||||
Thus
|
||||
\[
|
||||
\underbrace{\cV-\lim_n T^n(x)}_{T^\cV(x)} \not\in T^{-k}(G).
|
||||
\underbrace{\ulim{\cV}_n T^n(x)}_{T^\cV(x)} \not\in T^{-k}(G).
|
||||
\]
|
||||
We get that
|
||||
\[
|
||||
|
@ -48,8 +48,8 @@ $S \colon \beta\N \to \beta\N$,
|
|||
$S(\cU ) = \hat{1}+ \cU$.
|
||||
Then
|
||||
\[
|
||||
S^\cV(\cU) = \cV-\lim_n S^n(\cU) = \cV-\lim_n(\hat{n} + \cU) =
|
||||
\cV-\lim_n \hat{n} + \cU = \cV + \cU.
|
||||
S^\cV(\cU) = \ulim{\cV}_n S^n(\cU) = \ulim{\cV}_n(\hat{n} + \cU) =
|
||||
\ulim{\cV}_n \hat{n} + \cU = \cV + \cU.
|
||||
\]
|
||||
% TODO check
|
||||
|
||||
|
@ -75,8 +75,6 @@ S^\cV(\cU) = \cV-\lim_n S^n(\cU) = \cV-\lim_n(\hat{n} + \cU) =
|
|||
\[
|
||||
\forall \cU \in I.~\forall \cV \in \beta\N.~\cV + \cU \in I.
|
||||
\]
|
||||
|
||||
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
|
|
|
@ -151,6 +151,7 @@
|
|||
\DeclareSimpleMathOperator{proj}
|
||||
\newcommand{\fc}{\mathfrak{c}}
|
||||
\DeclareMathOperator{\acts}{\curvearrowright}
|
||||
\newcommand{\ulim}[1]{\mathop{#1\text{-lim}}\limits}
|
||||
|
||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
|
||||
|
|
Loading…
Reference in a new issue