From 7478dfd30d052449caf05c174dbaf8d1afec4008 Mon Sep 17 00:00:00 2001 From: Josia Pietsch Date: Tue, 31 Oct 2023 10:12:58 +0100 Subject: [PATCH] tutorial 02 --- inputs/tutorial_02.tex | 61 ++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 61 insertions(+) create mode 100644 inputs/tutorial_02.tex diff --git a/inputs/tutorial_02.tex b/inputs/tutorial_02.tex new file mode 100644 index 0000000..2560209 --- /dev/null +++ b/inputs/tutorial_02.tex @@ -0,0 +1,61 @@ +\tutorial{02}{2023-10-24}{} + +% Points: 15 / 16 + +\subsubsection{Exercise 4} + +\begin{fact} + Let $X $ be a compact Hausdorffspace. + Then the following are equivalent: + \begin{enumerate}[(i)] + \item $X$ is Polish, + \item $X$ is metrisable, + \item $X$ is second countable. + \end{enumerate} +\end{fact} +\begin{proof} + (i) $\implies$ (ii) clear + + (i) $\implies$ (iii) clear + + (ii) $\implies$ (i) Consider the cover $\{B_{\epsilon}(x) | x \in X\}$ + for every $\epsilon \in \Q$ + and chose a finite subcover. + Then the midpoints of the balls from the cover + form a countable dense subset. + + The metric is complete as $X$ is compact. + (For metric spaces: compact $\iff$ seq.~compact $\iff$ complete and totally bounded) + + (iii) $\implies$ (ii) + Use Urysohn's metrisation theorem and the fact that compact + Hausdorff spaces are normal +\end{proof} + +Let $X$ be compact Polish (compact metrisable $\implies$ compact Polish) +and $Y $ Polish. +Let $\cC(X,Y)$ be the set of continuous functions $X \to Y$. +Consider the metric $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$. +Clearly $d_u$ is a metric. + +\begin{claim} + $d_u$ is complete. +\end{claim} +\begin{subproof} + Let $(f_n)$ be a Cauchy sequence in $\cC(X,Y)$. + A $Y$ is complete, + there exists a pointwise limit $f$. + + $f_n$ converges uniformly to $f$: + + \[ + d(f_n(x), f(x)) \le \overbrace{d(f_n(x), f_m(x))}^{\mathclap{\text{$(f_n)$ is Cauchy}}} + + \underbrace{d(f_m(x), f(x))}_{\mathclap{\text{small for appropriate $m$}}}. + \] + + $f$ is continuous by the uniform convergence theorem. +\end{subproof} + +\begin{claim} + There exists a countable dense subset. +\end{claim}