This commit is contained in:
parent
0612713145
commit
6a9c2956b7
1 changed files with 5 additions and 4 deletions
|
@ -20,7 +20,7 @@
|
|||
T \in \IF &\iff& \exists \beta \in \cN .~\forall n \in \N.~T(\beta\defon{n}) = 1.
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
Consider $\{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}$.
|
||||
Consider $D \coloneqq \{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}$.
|
||||
Note that this set is closed in $\Tr \times \cN$,
|
||||
since it is a countable intersection of clopen sets.
|
||||
% TODO Why clopen?
|
||||
|
@ -123,9 +123,9 @@ For the proof we need some prerequisites:
|
|||
$\IF$ is $\Sigma^1_1$-complete.
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
Let $A \subseteq X$ is analytic
|
||||
and $X$ Polish and uncountable,
|
||||
then
|
||||
Let $X$ be Polish.
|
||||
Suppose that $A \subseteq X$ is analytic and uncountable.
|
||||
Then
|
||||
% https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIl0sWzEsMCwiXFxjTiJdLFsyLDAsIlxcVHIiXSxbMCwxLCJBIl0sWzEsMSwiYihBKSJdLFsxLDIsImYiXSxbMCwxLCJiIl0sWzMsMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNCwxLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ==
|
||||
\[\begin{tikzcd}
|
||||
X & \cN & \Tr \\
|
||||
|
@ -135,6 +135,7 @@ For the proof we need some prerequisites:
|
|||
\arrow[hook, from=2-1, to=1-1]
|
||||
\arrow[hook, from=2-2, to=1-2]
|
||||
\end{tikzcd}\]
|
||||
where $f$ is chosen as in \yaref{thm:lec12:1}.
|
||||
|
||||
If $X$ is Polish and countable and $A \subseteq X$ analytic,
|
||||
just consider
|
||||
|
|
Loading…
Reference in a new issue