This commit is contained in:
Josia Pietsch 2024-01-25 12:38:55 +01:00
commit 67a851748e
Signed by: josia
GPG key ID: E70B571D66986A2D
20 changed files with 624 additions and 381 deletions

View file

@ -1,4 +1,6 @@
These are my notes on the lecture Probability Theory, \gist{%
These are my notes on the lecture
Logic 3: Abstract Topological Dynamics and Descriptive Set Theory
taught by \textsc{Aleksandra Kwiatkowska} taught by \textsc{Aleksandra Kwiatkowska}
in the summer term 2023 at the University Münster. in the summer term 2023 at the University Münster.
@ -18,3 +20,15 @@ I could not attend!
This notes follow the way the material was presented in the lecture rather This notes follow the way the material was presented in the lecture rather
closely. Additions (e.g.~from exercise sheets) closely. Additions (e.g.~from exercise sheets)
and slight modifications have been marked with $\dagger$. and slight modifications have been marked with $\dagger$.
}{
This document aims to give a very brief summary of
my \href{https://josia-notes.users.abstractnonsen.se/w23-logic-3/logic3.pdf}{notes on the course Logic 3}.
I try to omit most technical details and only summarize the most important
ideas.
Note that this is currently work in progress.
Currently the differences to the original document are only
minor (this is still mostly a technical test),
but this document will get shorter as I work through
and summarize it.
}

View file

@ -76,7 +76,7 @@ However the converse of this does not hold.
\end{itemize} \end{itemize}
\end{fact} \end{fact}
\begin{fact} \begin{fact}
Compact\footnote{It is not clear whether compact means compact and Hausdorff in this lecture.} Hausdorff spaces are \vocab{normal} (T4) Compact Hausdorff spaces are \vocab{normal} (T4)
i.e.~two disjoint closed subsets can be separated i.e.~two disjoint closed subsets can be separated
by open sets. by open sets.
\end{fact} \end{fact}
@ -114,7 +114,7 @@ However the converse of this does not hold.
\end{absolutelynopagebreak} \end{absolutelynopagebreak}
\subsection{Some facts about polish spaces} \subsection{Some facts about polish spaces}
\gist{%
\begin{fact} \begin{fact}
Let $(X, \tau)$ be a topological space. Let $(X, \tau)$ be a topological space.
Let $d$ be a metric on $X$. Let $d$ be a metric on $X$.
@ -130,9 +130,10 @@ To show that $\tau_d = \tau_{d'}$
for two metrics $d, d'$, for two metrics $d, d'$,
suffices to show that open balls in one metric are unions of open balls in the other. suffices to show that open balls in one metric are unions of open balls in the other.
\end{fact} \end{fact}
}{}
\begin{notation} \begin{notation}
We sometimes denote $\min(a,b)$ by $a \wedge b$. We sometimes\footnote{only in this subsection?} denote $\min(a,b)$ by $a \wedge b$.
\end{notation} \end{notation}
\begin{proposition} \begin{proposition}
@ -142,6 +143,7 @@ suffices to show that open balls in one metric are unions of open balls in the o
Then $d' \coloneqq \min(d,1)$ is also a metric compatible with $\tau$. Then $d' \coloneqq \min(d,1)$ is also a metric compatible with $\tau$.
\end{proposition} \end{proposition}
\gist{%
\begin{proof} \begin{proof}
To check the triangle inequality: To check the triangle inequality:
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
@ -154,6 +156,7 @@ suffices to show that open balls in one metric are unions of open balls in the o
Since $d$ is complete, we have that $d'$ is complete. Since $d$ is complete, we have that $d'$ is complete.
\end{proof} \end{proof}
}{}
\begin{proposition} \begin{proposition}
Let $A$ be a Polish space. Let $A$ be a Polish space.
Then $A^{\omega}$ Polish. Then $A^{\omega}$ Polish.
@ -252,15 +255,15 @@ suffices to show that open balls in one metric are unions of open balls in the o
\begin{proposition} \begin{proposition}
Closed subspaces of Polish spaces are Polish. Closed subspaces of Polish spaces are Polish.
\end{proposition} \end{proposition}
\gist{}{ \gist{%
\begin{proof} \begin{proof}
Let $X$ be Polish and $V \subseteq X$ closed. Let $X$ be Polish and $V \subseteq X$ closed.
Let $d$ be a complete metric on $X$. Let $d$ be a complete metric on $X$.
Then $d\defon{V}$ is complete. Then $d\defon{V}$ is complete.
Subspaces of second countable spaces Subspaces of second countable spaces
are second countable. are second countable.
\end{proof} \end{proof}%
} }{}
\begin{definition} \begin{definition}
Let $X$ be a topological space. Let $X$ be a topological space.

View file

@ -72,7 +72,8 @@
\[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\] \[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\]
metric is complete. metric is complete.
$f_U$ is an embedding of $U$ into $X \times \R$\gist{: $f_U$ is an embedding of $U$ into $X \times \R$%
\gist{:
\begin{itemize} \begin{itemize}
\item It is injective because of the first coordinate. \item It is injective because of the first coordinate.
\item It is continuous since $d(x, U^c)$ is continuous \item It is continuous since $d(x, U^c)$ is continuous
@ -82,6 +83,7 @@
\end{itemize} \end{itemize}
}{.} }{.}
\gist{%
So we have shown that $U$ and So we have shown that $U$ and
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$ the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$
are homeomorphic. are homeomorphic.
@ -93,20 +95,28 @@
Therefore we identified $U$ with a closed subspace of Therefore we identified $U$ with a closed subspace of
the Polish space $(X \times \R, d_1)$. the Polish space $(X \times \R, d_1)$.
}{%
So $U \cong \mathop{Graph}(x \mapsto \frac{1}{d(x, U^c)})$
and the RHS is a close subspace of the Polish space
$(X \times \R, d_1)$.
}
\end{refproof} \end{refproof}
Let $Y = \bigcap_{n \in \N} U_n$ be $G_{\delta}$. Let $Y = \bigcap_{n \in \N} U_n$ be $G_{\delta}$.
Take Consider
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
f_Y\colon Y &\longrightarrow & X \times \R^{\N} \\ f_Y\colon Y &\longrightarrow & X \times \R^{\N} \\
x &\longmapsto & x &\longmapsto &
\left(x, \left( \frac{1}{\delta(x,U_n^c)} \right)_{n \in \N}\right) \left(x, \left( \frac{1}{\delta(x,U_n^c)} \right)_{n \in \N}\right)
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
\gist{
As for an open $U$, $f_Y$ is an embedding. As for an open $U$, $f_Y$ is an embedding.
Since $X \times \R^{\N}$ Since $X \times \R^{\N}$
is completely metrizable, is completely metrizable,
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$. so is the closed set $f_Y(Y) \subseteq X \times \R^\N$.
}{}
\begin{claim} \begin{claim}
\label{psubspacegdelta:c2} \label{psubspacegdelta:c2}
@ -123,7 +133,7 @@
\item $\diam_d(U) \le \frac{1}{n}$, \item $\diam_d(U) \le \frac{1}{n}$,
\item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$. \item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$.
\end{enumerate} \end{enumerate}
\gist{ \gist{%
We want to show that $Y = \bigcap_{n \in \N} V_n$. We want to show that $Y = \bigcap_{n \in \N} V_n$.
For $x \in Y$, $n \in \N$ we have $x \in V_n$, For $x \in Y$, $n \in \N$ we have $x \in V_n$,
as we can choose two neighbourhoods as we can choose two neighbourhoods
@ -155,4 +165,3 @@
}{Then $Y = \bigcap_n U_n$.} }{Then $Y = \bigcap_n U_n$.}
\end{refproof} \end{refproof}
\end{refproof} \end{refproof}

View file

@ -2,7 +2,7 @@
\subsection{Trees} \subsection{Trees}
\gist{%
\begin{notation} \begin{notation}
Let $A \neq \emptyset$, $n \in \N$. Let $A \neq \emptyset$, $n \in \N$.
Then Then
@ -59,6 +59,7 @@
define extension, initial segments define extension, initial segments
and concatenation of a finite sequence with an infinite one. and concatenation of a finite sequence with an infinite one.
\end{notation} \end{notation}
}{}
\begin{definition} \begin{definition}
A \vocab{tree} A \vocab{tree}
@ -127,6 +128,7 @@
We define $U_s$ inductively on the length of $s$. We define $U_s$ inductively on the length of $s$.
\gist{%
For $U_{\emptyset}$ take any non-empty open set For $U_{\emptyset}$ take any non-empty open set
with small enough diameter. with small enough diameter.
@ -136,7 +138,9 @@
be disjoint, open, be disjoint, open,
of diameter $\le \frac{1}{2^{|s| +1}}$ of diameter $\le \frac{1}{2^{|s| +1}}$
and such that $\overline{U_{s\concat 0}}, \overline{U_{S \concat 1}} \subseteq U_s$. and such that $\overline{U_{s\concat 0}}, \overline{U_{S \concat 1}} \subseteq U_s$.
}{}
\gist{%
Let $x \in 2^{\N}$. Let $x \in 2^{\N}$.
Then let $f(x)$ be the unique point in $X$ Then let $f(x)$ be the unique point in $X$
such that such that
@ -147,19 +151,23 @@
It is clear that $f$ is injective and continuous. It is clear that $f$ is injective and continuous.
% TODO: more details % TODO: more details
$2^{\N}$ is compact, hence $f^{-1}$ is also continuous. $2^{\N}$ is compact, hence $f^{-1}$ is also continuous.
}{Consider $f\colon 2^{\N} \hookrightarrow X, x \mapsto y$, where $\{y\} = \bigcap_n U_{x\defon n}$.
By compactness of $2^{\N}$, we get that $f^{-1}$ is continuous.}
\end{proof} \end{proof}
\begin{corollary} \begin{corollary}
\label{cor:perfectpolishcard} \label{cor:perfectpolishcard}
Every nonempty perfect Polish Every nonempty perfect Polish
space $X$ has cardinality $\fc = 2^{\aleph_0}$ space $X$ has cardinality $\fc = 2^{\aleph_0}$
% TODO: eulerscript C ?
\end{corollary} \end{corollary}
\begin{proof} \begin{proof}
\gist{%
Since the cantor space embeds into $X$, Since the cantor space embeds into $X$,
we get the lower bound. we get the lower bound.
Since $X$ is second countable and Hausdorff, Since $X$ is second countable and Hausdorff,
we get the upper bound. we get the upper bound.%
}{Lower bound: $2^{\N} \hookrightarrow X$,
upper bound: \nth{2} countable and Hausdorff.}
\end{proof} \end{proof}
\begin{theorem} \begin{theorem}
@ -203,12 +211,14 @@
countable union of closed sets, countable union of closed sets,
i.e.~the complement of a $G_\delta$ set. i.e.~the complement of a $G_\delta$ set.
\end{definition} \end{definition}
\gist{%
\begin{observe} \begin{observe}
\begin{itemize} \begin{itemize}
\item Any open set is $F {\sigma}$. \item Any open set is $F {\sigma}$.
\item In metric spaces the intersection of an open and closed set is $F_\sigma$. \item In metric spaces the intersection of an open and closed set is $F_\sigma$.
\end{itemize} \end{itemize}
\end{observe} \end{observe}
}{}
\begin{refproof}{thm:bairetopolish} \begin{refproof}{thm:bairetopolish}
Let $d$ be a complete metric on $X$. Let $d$ be a complete metric on $X$.
W.l.o.g.~$\diam(X) \le 1$. W.l.o.g.~$\diam(X) \le 1$.
@ -220,7 +230,7 @@
\item $F_\emptyset = X$, \item $F_\emptyset = X$,
\item $F_s$ is $F_\sigma$ for all $s$. \item $F_s$ is $F_\sigma$ for all $s$.
\item The $F_{s \concat i}$ partition $F_s$, \item The $F_{s \concat i}$ partition $F_s$,
i.e.~$F_{s} = \bigsqcup_i F_{s \concat i}$. % TODO change notation? i.e.~$F_{s} = \bigsqcup_i F_{s \concat i}$.
Furthermore we want that Furthermore we want that
$\overline{F_{s \concat i}} \subseteq F_s$ $\overline{F_{s \concat i}} \subseteq F_s$
@ -228,6 +238,7 @@
\item $\diam(F_s) \le 2^{-|s|}$. \item $\diam(F_s) \le 2^{-|s|}$.
\end{enumerate} \end{enumerate}
\gist{%
Suppose we already have $F_s \text{\reflectbox{$\coloneqq$}} F$. Suppose we already have $F_s \text{\reflectbox{$\coloneqq$}} F$.
We need to construct a partition $(F_i)_{i \in \N}$ We need to construct a partition $(F_i)_{i \in \N}$
of $F$ with $\overline{F_i} \subseteq F$ of $F$ with $\overline{F_i} \subseteq F$
@ -252,6 +263,7 @@
The sets $D_i \coloneqq F_i^0 \cap B_i \setminus (B_1 \cup \ldots \cup B_{i-1})$ The sets $D_i \coloneqq F_i^0 \cap B_i \setminus (B_1 \cup \ldots \cup B_{i-1})$
are $F_\sigma$, disjoint are $F_\sigma$, disjoint
and $F_i^0 = \bigcup_{j} D_j$. and $F_i^0 = \bigcup_{j} D_j$.
}{Induction.}

View file

@ -5,6 +5,7 @@
\end{remark} \end{remark}
\begin{refproof}{thm:bairetopolish} \begin{refproof}{thm:bairetopolish}
\gist{%
Take Take
\[D = \{x \in \cN : \bigcap_{n} F_{x\defon{n}} \neq \emptyset\}.\] \[D = \{x \in \cN : \bigcap_{n} F_{x\defon{n}} \neq \emptyset\}.\]
@ -13,15 +14,18 @@
\[ \[
\bigcap_{n} F_{x\defon{n}} = \bigcap_{n} \overline{F_{x\defon{n}}}. \bigcap_{n} F_{x\defon{n}} = \bigcap_{n} \overline{F_{x\defon{n}}}.
\] \]
}{}
$f\colon D \to X$ is determined by $f\colon D \to X$ is determined by
\[ \[
\{f(x)\} = \bigcap_{n} F_{x\defon{n}} \{f(x)\} = \bigcap_{n} F_{x\defon{n}}
\] \]
\gist{%
$f$ is injective and continuous. $f$ is injective and continuous.
The proof of this is exactly the same as in The proof of this is exactly the same as in
\yaref{thm:cantortopolish}. \yaref{thm:cantortopolish}.
}{}
\begin{claim} \begin{claim}
\label{thm:bairetopolish:c1} \label{thm:bairetopolish:c1}
@ -60,7 +64,7 @@
Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x=s\defon{n}\}$. Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x=s\defon{n}\}$.
Clearly $S$ is a pruned tree. Clearly $S$ is a pruned tree.
Moreover, since $D$ is closed, we have that\todo{Proof this (homework?)} Moreover, since $D$ is closed, we have that (cf.~\yaref{s3e1})
\[ \[
D = [S] = \{x \in \N^\N : \forall n \in \N.~x\defon{n} \in S\}. D = [S] = \{x \in \N^\N : \forall n \in \N.~x\defon{n} \in S\}.
\] \]
@ -76,21 +80,27 @@
\item $|s| = \phi(|s|)$, \item $|s| = \phi(|s|)$,
\item if $s \in S$, then $\phi(s) = s$. \item if $s \in S$, then $\phi(s) = s$.
\end{itemize} \end{itemize}
\gist{%
Let $\phi(\emptyset) = \emptyset$. Let $\phi(\emptyset) = \emptyset$.
Suppose that $\phi(t)$ is defined. Suppose that $\phi(t)$ is defined.
If $t\concat a \in S$, then set If $t\concat a \in S$, then set
$\phi(t\concat a) \coloneqq t\concat a$. $\phi(t\concat a) \coloneqq t\concat a$.
Otherwise take some $b$ such that Otherwise take some $b$ such that
$t\concat b \in S$ and define $t\concat b \in S$ and define
$\phi(t\concat a) \coloneqq \phi(t)\concat b$. $\phi(t\concat a) \coloneqq \phi(t)\concat b$.%
}{}%
This is possible since $S$ is pruned. This is possible since $S$ is pruned.
\gist{%
Let $r\colon \cN = [\N^{<\N}] \to [S] = D$ Let $r\colon \cN = [\N^{<\N}] \to [S] = D$
be the function defined by $r(x) = \bigcup_n f(x\defon{n})$. be the function defined by $r(x) = \bigcup_n f(x\defon{n})$.
}{}
$r$ is continuous, since $r$ is continuous, since
$d_{\cN}(r(x), r(y)) \le d_{\cN}(x,y)$. % Lipschitz $d_{\cN}(r(x), r(y)) \le d_{\cN}(x,y)$. % Lipschitz
\gist{%
It is immediate that $r$ is a retraction. It is immediate that $r$ is a retraction.
}{}
\end{refproof} \end{refproof}
\section{Meager and Comeager Sets} \section{Meager and Comeager Sets}
@ -117,9 +127,11 @@
The complement of a meager set is called The complement of a meager set is called
\vocab{comeager}. \vocab{comeager}.
\end{definition} \end{definition}
\gist{%
\begin{example} \begin{example}
$\Q \subseteq \R$ is meager. $\Q \subseteq \R$ is meager.
\end{example} \end{example}
}{}
\begin{notation} \begin{notation}
Let $A, B \subseteq X$. Let $A, B \subseteq X$.
We write $A =^\ast B$ We write $A =^\ast B$
@ -127,25 +139,29 @@
$A \symdif B \coloneqq (A\setminus B) \cup (B \setminus A)$, $A \symdif B \coloneqq (A\setminus B) \cup (B \setminus A)$,
is meager. is meager.
\end{notation} \end{notation}
\gist{%
\begin{remark} \begin{remark}
$=^\ast$ is an equivalence relation. $=^\ast$ is an equivalence relation.
\end{remark} \end{remark}
}{}
\begin{definition} \begin{definition}
A set $A \subseteq X$ A set $A \subseteq X$
has the \vocab{Baire property} (\vocab{BP}) has the \vocab{Baire property} (\vocab{BP})
if $A =^\ast U$ for some $U \overset{\text{open}}{\subseteq} X$. if $A =^\ast U$ for some $U \overset{\text{open}}{\subseteq} X$.
\end{definition} \end{definition}
\gist{%
Note that open sets and meager sets have the Baire property. Note that open sets and meager sets have the Baire property.
}{}
\gist{%
\begin{example} \begin{example}
\begin{itemize} \begin{itemize}
\item $\Q \subseteq \R$ is $F_\sigma$. \item $\Q \subseteq \R$ is $F_\sigma$.
\item $\R \setminus \Q \subseteq \R$ is $G_\delta$. \item $\R \setminus \Q \subseteq \R$ is $G_\delta$.
\item $\Q \subseteq \R$ is not $G_{\delta}$. \item $\Q \subseteq \R$ is not $G_{\delta}$:
(It is dense and meager, It is dense and meager,
hence it can not be $G_\delta$ hence it can not be $G_\delta$
by the Baire category theorem). by the \yaref{thm:bct}.
\end{itemize} \end{itemize}
\end{example} \end{example}
}{}

View file

@ -6,10 +6,9 @@
\item If $F$ is closed then $F$ is nwd iff $X \setminus F$ is open and dense. \item If $F$ is closed then $F$ is nwd iff $X \setminus F$ is open and dense.
\item Any meager set $B$ is contained in a meager $F_{\sigma}$-set. \item Any meager set $B$ is contained in a meager $F_{\sigma}$-set.
\end{itemize} \end{itemize}
\end{fact} \end{fact}
\begin{proof} % remove? \gist{%
\begin{proof}
\begin{itemize} \begin{itemize}
\item This follows from the definition as $\overline{\overline{A}} = \overline{A}$. \item This follows from the definition as $\overline{\overline{A}} = \overline{A}$.
\item Trivial. \item Trivial.
@ -17,7 +16,9 @@
Then $B \subseteq \bigcup_{n < \omega} \overline{B_n}$. Then $B \subseteq \bigcup_{n < \omega} \overline{B_n}$.
\end{itemize} \end{itemize}
\end{proof} \end{proof}
}{}
\gist{%
\begin{definition} \begin{definition}
A \vocab{$\sigma$-algebra} on a set $X$ A \vocab{$\sigma$-algebra} on a set $X$
is a collection of subsets of $X$ is a collection of subsets of $X$
@ -32,14 +33,15 @@
Since $\bigcap_{i < \omega} A_i = \left( \bigcup_{i < \omega} A_i^c \right)^c$ Since $\bigcap_{i < \omega} A_i = \left( \bigcup_{i < \omega} A_i^c \right)^c$
we have that $\sigma$-algebras are closed under countable intersections. we have that $\sigma$-algebras are closed under countable intersections.
\end{fact} \end{fact}
}{}
\begin{theorem} \begin{theorem}
\label{thm:bairesigma} \label{thm:bairesigma}
Let $X$ be a topological space. Let $X$ be a topological space.
Then the collection of sets with the Baire property Then the collection of sets with the Baire property
is a $\sigma$-algebra on $X$. is \gist{a $\sigma$-algebra on $X$.
It is the smallest $\sigma$-algebra It is}{} the smallest $\sigma$-algebra
containing all meager and open sets. containing all meager and open sets.
\end{theorem} \end{theorem}
\begin{refproof}{thm:bairesigma} \begin{refproof}{thm:bairesigma}
@ -97,6 +99,7 @@
%\end{example} %\end{example}
\begin{theorem}[Baire Category theorem] \begin{theorem}[Baire Category theorem]
\yalabel{Baire Category Theorem}{Baire Category Theorem}{thm:bct}
Let $X$ be a completely metrizable space. Let $X$ be a completely metrizable space.
Then every comeager set of $X$ is dense in $X$. Then every comeager set of $X$ is dense in $X$.
\end{theorem} \end{theorem}
@ -111,8 +114,8 @@
\item The intersection of countable many \item The intersection of countable many
open dense sets is dense. open dense sets is dense.
\end{enumerate} \end{enumerate}
In this case $X$ is called a \vocab{Baire space}. In this case $X$ is called a \vocab{Baire space}.%
\footnote{see \yaref{s5e1}} \footnote{cf.~\yaref{s5e1}}
\end{theoremdef} \end{theoremdef}
\begin{proof} \begin{proof}
\todo{Proof (short)} \todo{Proof (short)}
@ -129,7 +132,6 @@
This proof can be adapted to other open sets $X$. This proof can be adapted to other open sets $X$.
\end{proof} \end{proof}
\begin{notation} \begin{notation}
Let $X ,Y$ be topological spaces, Let $X ,Y$ be topological spaces,
$A \subseteq X \times Y$ $A \subseteq X \times Y$
@ -273,9 +275,11 @@ but for meager sets:
% \end{refproof} % \end{refproof}
% TODO fix claim numbers % TODO fix claim numbers
\gist{%
\begin{remark} \begin{remark}
Suppose that $A$ has the BP. Suppose that $A$ has the BP.
Then there is an open $U$ such that Then there is an open $U$ such that
$A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager. $A \symdif U \mathbin{\text{\reflectbox{$\coloneqq$}}} M$ is meager.
Then $A = U \symdif M$. Then $A = U \symdif M$.
\end{remark} \end{remark}
}{}

View file

@ -101,7 +101,6 @@ Then define
\Pi^0_\alpha(X) \coloneqq \lnot \Sigma^0_\alpha(X) \coloneqq \Pi^0_\alpha(X) \coloneqq \lnot \Sigma^0_\alpha(X) \coloneqq
\{X \setminus A | A \in \Sigma^0_\alpha(X)\}, \{X \setminus A | A \in \Sigma^0_\alpha(X)\},
\] \]
% \todo{Define $\lnot$ (element-wise complement)}
and for $\alpha > 1$ and for $\alpha > 1$
\[ \[
\Sigma^0_\alpha \coloneqq \{\bigcup_{n < \omega} A_n : A_n \in \Pi^0_{\alpha_n}(X) \text{ for some $\alpha_n < \alpha$}\}. \Sigma^0_\alpha \coloneqq \{\bigcup_{n < \omega} A_n : A_n \in \Pi^0_{\alpha_n}(X) \text{ for some $\alpha_n < \alpha$}\}.

View file

@ -37,17 +37,18 @@
\item \begin{itemize} \item \begin{itemize}
\item $\Sigma^0_\xi(X)$ is closed under countable unions. \item $\Sigma^0_\xi(X)$ is closed under countable unions.
\item $\Pi^0_\xi(X)$ is closed under countable intersections. \item $\Pi^0_\xi(X)$ is closed under countable intersections.
\item $\Delta^0_\xi(X)$ is closed under complements, \item $\Delta^0_\xi(X)$ is closed under complements.
countable unions and
countable intersections.
\end{itemize} \end{itemize}
\item \begin{itemize} \item \begin{itemize}
\item $\Sigma^0_\xi(X)$ is closed under \emph{finite} intersections. \item $\Sigma^0_\xi(X)$ is closed under \emph{finite} intersections.
\item $\Pi^0_\xi(X)$ is closed under \emph{finite} unions. \item $\Pi^0_\xi(X)$ is closed under \emph{finite} unions.
\item $\Delta^0_\xi(X)$ is closed under finite unions and
finite intersections.
\end{itemize} \end{itemize}
\end{enumerate} \end{enumerate}
\end{proposition} \end{proposition}
\gist{%
\begin{proof} \begin{proof}
\begin{enumerate}[(a)] \begin{enumerate}[(a)]
\item This follows directly from the definition. \item This follows directly from the definition.
@ -67,24 +68,27 @@
\end{enumerate} \end{enumerate}
\end{proof} \end{proof}
}{}
\begin{example} \begin{example}
Consider the cantor space $2^{\omega}$. Consider the cantor space $2^{\omega}$.
We have that $\Delta^0_1(2^{\omega})$ We have that $\Delta^0_1(2^{\omega})$
is not closed under countable unions is not closed under countable unions%
(countable unions yield all open sets, but there are open \gist{ (countable unions yield all open sets, but there are open
sets that are not clopen). sets that are not clopen)}{}.
\end{example} \end{example}
\subsection{Turning Borels Sets into Clopens} \subsection{Turning Borels Sets into Clopens}
\begin{theorem}% \begin{theorem}%
\gist{%
\footnote{Whilst strikingly concise the verb ``\vocab[Clopenization™]{to clopenize}'' \footnote{Whilst strikingly concise the verb ``\vocab[Clopenization™]{to clopenize}''
unfortunately seems to be non-standard vocabulary. unfortunately seems to be non-standard vocabulary.
Our tutor repeatedly advised against using it in the final exam. Our tutor repeatedly advised against using it in the final exam.
Contrary to popular belief Contrary to popular belief
the very same tutor was \textit{not} the one first to introduce it, the very same tutor was \textit{not} the one first to introduce it,
as it would certainly be spelled ``to clopenise'' if that were the case. as it would certainly be spelled ``to clopenise'' if that were the case.
} }%
}{}%
\label{thm:clopenize} \label{thm:clopenize}
Let $(X, \cT)$ be a Polish space. Let $(X, \cT)$ be a Polish space.
For any Borel set $A \subseteq X$, For any Borel set $A \subseteq X$,
@ -163,7 +167,7 @@
such that $\cT_n \supseteq \cT$ such that $\cT_n \supseteq \cT$
and $\cB(\cT_n) = \cB(\cT)$. and $\cB(\cT_n) = \cB(\cT)$.
Then the topology $\cT_\infty$ generated by $\bigcup_{n} \cT_n$ Then the topology $\cT_\infty$ generated by $\bigcup_{n} \cT_n$
is still Polish is Polish
and $\cB(\cT_\infty) = \cB(T)$. and $\cB(\cT_\infty) = \cB(T)$.
\end{lemma} \end{lemma}
\begin{proof} \begin{proof}
@ -183,7 +187,51 @@
definition of $\cF$ belong to definition of $\cF$ belong to
a countable basis of the respective $\cT_n$). a countable basis of the respective $\cT_n$).
\todo{This proof will be finished in the next lecture} % Proof was finished in lecture 8
Let $Y = \prod_{n \in \N} (X, \cT_n)$.
Then $Y$ is Polish.
Let $\delta\colon (X, \cT_\infty) \to Y$
defined by $\delta(x) = (x,x,x,\ldots)$.
\begin{claim}
$\delta$ is a homeomorphism.
\end{claim}
\begin{subproof}
Clearly $\delta$ is a bijection.
We need to show that it is continuous and open.
Let $U \in \cT_i$.
Then
\[
\delta^{-1}(D \cap \left( X \times X \times \ldots\times U \times \ldots) \right)) = U \in \cT_i \subseteq \cT_\infty,
\]
hence $\delta$ is continuous.
Let $U \in \cT_\infty$.
Then $U$ is the union of sets of the form
\[
V = U_{n_1} \cap U_{n_2} \cap \ldots \cap U_{nu}
\]
for some $n_1 < n_2 < \ldots < n_u$
and $U_{n_i} \in \cT_i$.
Thus is suffices to consider sets of this form.
We have that
\[
\delta(V) = D \cap (X \times X \times \ldots \times U_{n_1} \times \ldots \times U_{n_2} \times \ldots \times U_{n_u} \times X \times \ldots) \overset{\text{open}}{\subseteq} D.
\]
\end{subproof}
This will finish the proof since
\[
D = \{(x,x,\ldots) \in Y : x \in X\} \overset{\text{closed}}{\subseteq} Y
\]
Why? Let $(x_n) \in Y \setminus D$.
Then there are $i < j$ such that $x_i \neq x_j$.
Take disjoint open $x_i \in U$, $x_j \in V$.
Then
\[(x_n) \in X \times X \times \ldots \times U \times \ldots \times X \times \ldots \times V \times X \times \ldots\]
is open in $Y\setminus D$.
Hence $Y \setminus D$ is open, thus $D$ is closed.
It follows that $D$ is Polish.
\end{proof} \end{proof}
We need to show that $A$ is closed under countable unions. We need to show that $A$ is closed under countable unions.

View file

@ -1,61 +1,8 @@
\lecture{08}{2023-11-10}{} \lecture{08}{2023-11-10}{}\footnote{%
In the beginning of the lecture, we finished
\todo{put this lemma in the right place} the proof of \yaref{thm:clopenize:l2}.
\begin{lemma}[Lemma 2] This has been moved to the notes on lecture 7.%
Let $(X, \cT)$ be a Polish space. }
Let $\cT_n \supseteq \cT$ be Polish
with $\cB(X, \cT_n) = \cB(X, \cT)$.
Let $\cT_\infty$ be the topology generated
by $\bigcup_n \cT_n$.
Then $(X, \cT_\infty)$ is Polish
and $\cB(X, \cT_\infty) = \cB(X, \cT)$.
\end{lemma}
\begin{proof}
Let $Y = \prod_{n \in \N} (X, \cT_n)$.
Then $Y$ is Polish.
Let $\delta\colon (X, \cT_\infty) \to Y$
defined by $\delta(x) = (x,x,x,\ldots)$.
\begin{claim}
$\delta$ is a homeomorphism.
\end{claim}
\begin{subproof}
Clearly $\delta$ is a bijection.
We need to show that it is continuous and open.
Let $U \in \cT_i$.
Then
\[
\delta^{-1}(D \cap \left( X \times X \times \ldots\times U \times \ldots) \right)) = U \in \cT_i \subseteq \cT_\infty,
\]
hence $\delta$ is continuous.
Let $U \in \cT_\infty$.
Then $U$ is the union of sets of the form
\[
V = U_{n_1} \cap U_{n_2} \cap \ldots \cap U_{nu}
\]
for some $n_1 < n_2 < \ldots < n_u$
and $U_{n_i} \in \cT_i$.
Thus is suffices to consider sets of this form.
We have that
\[
\delta(V) = D \cap (X \times X \times \ldots \times U_{n_1} \times \ldots \times U_{n_2} \times \ldots \times U_{n_u} \times X \times \ldots) \overset{\text{open}}{\subseteq} D.
\]
\end{subproof}
This will finish the proof since
\[
D = \{(x,x,\ldots) \in Y : x \in X\} \overset{\text{closed}}{\subseteq} Y
\]
Why? Let $(x_n) \in Y \setminus D$.
Then there are $i < j$ such that $x_i \neq x_j$.
Take disjoint open $x_i \in U$, $x_j \in V$.
Then
\[(x_n) \in X \times X \times \ldots \times U \times \ldots \times X \times \ldots \times V \times X \times \ldots\]
is open in $Y\setminus D$.
Hence $Y \setminus D$ is open, thus $D$ is closed.
It follows that $D$ is Polish.
\end{proof}
\subsection{Parametrizations} \subsection{Parametrizations}
%\todo{choose better title} %\todo{choose better title}

View file

@ -148,6 +148,7 @@ We will see later that $\Sigma^1_1(X) \cap \Pi^1_1(X) = \cB(X)$.
\begin{theorem} \begin{theorem}
\label{thm:universals11}
Let $X,Y$ be uncountable Polish spaces. Let $X,Y$ be uncountable Polish spaces.
There exists a $Y$-universal $\Sigma^1_1(X)$ set. There exists a $Y$-universal $\Sigma^1_1(X)$ set.
\end{theorem} \end{theorem}

View file

@ -153,13 +153,14 @@ We will not proof this in this lecture.
\subsection{Ill-Founded Trees} \subsection{Ill-Founded Trees}
\gist{%
Recall that a \vocab{tree} on $\N$ is a subset of Recall that a \vocab{tree} on $\N$ is a subset of
$\N^{<\N}$ $\N^{<\N}$
closed under taking initial segments. closed under taking initial segments.
We now identify trees with their characteristic functions, We now identify trees with their characteristic functions,
i.e.~we want to associate a tree $T \subseteq \N^{<\N}$ i.e.~we want to associate a tree $T \subseteq \N^{<\N}$}%
{We identify trees $T \subseteq \N^{<\N}$ with their characteristic functions:}
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
\One_T\colon \omega^{<\omega} &\longrightarrow & \{0,1\} \\ \One_T\colon \omega^{<\omega} &\longrightarrow & \{0,1\} \\
x &\longmapsto & \begin{cases} x &\longmapsto & \begin{cases}
@ -167,16 +168,15 @@ i.e.~we want to associate a tree $T \subseteq \N^{<\N}$
0 &: x \not\in T. 0 &: x \not\in T.
\end{cases} \end{cases}
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
Note that $\One_T \in {\{0,1\}^\N}^{< \N}$. \gist{Note that $\One_T \in {\{0,1\}^\N}^{< \N}$.}{}
Let $\Tr = \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$. Let \vocab{$\Tr$} $ \coloneqq \{T \in {2^{\N}}^{<\N} : T \text{ is a tree}\} \subseteq {2^{\N}}^{<\N}$.
\begin{observe} \begin{observe}
\[ $\Tr \subseteq {2^{\N}}^{<\N}$ is closed
\Tr \subseteq {2^{\N}}^{<\N} (where we take the topology of the Cantor space).
\]
is closed (where we take the topology of the Cantor space).
\end{observe} \end{observe}
\gist{%
Indeed, for any $ s \in \N^{<\N}$ Indeed, for any $ s \in \N^{<\N}$
we have that $\{T \in {2^{\N}}^{<\N} : s \in T\}$ we have that $\{T \in {2^{\N}}^{<\N} : s \in T\}$
and $\{T \in {2^{\N}}^{<\N} : s\not\in T\}$ are clopen. and $\{T \in {2^{\N}}^{<\N} : s\not\in T\}$ are clopen.
@ -185,6 +185,4 @@ In particular for $s$ fixed,
we have that we have that
\[\{A \in {2^{\N}}^{<\N} : s \in A \text{ and } s' \in A \text{ for any initial segment $s' \subseteq s$}\}\] \[\{A \in {2^{\N}}^{<\N} : s \in A \text{ and } s' \in A \text{ for any initial segment $s' \subseteq s$}\}\]
is clopen in ${2^{\N}}^{<\N}$. is clopen in ${2^{\N}}^{<\N}$.
}{}

View file

@ -21,62 +21,90 @@
T \in \IF &\iff& \exists \beta \in \cN .~\forall n \in \N.~T(\beta\defon{n}) = 1. T \in \IF &\iff& \exists \beta \in \cN .~\forall n \in \N.~T(\beta\defon{n}) = 1.
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
Consider $D \coloneqq \{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}$. Consider
\[D \coloneqq \{(T, \beta) \in \Tr \times \cN : \forall n.~ T(\beta\defon{n}) = 1\}.\]
\gist{%
Note that this set is closed in $\Tr \times \cN$, Note that this set is closed in $\Tr \times \cN$,
since it is a countable intersection of clopen sets. since it is a countable intersection of clopen sets.
% TODO Why clopen?
Then $\IF = \proj_{\Tr}(D) \in \Sigma^1_1$. Then $\IF = \proj_{\Tr}(D) \in \Sigma^1_1$.
}{$D \overset{\text{closed}}{\subseteq} \Tr \times \cN$ and $\IF = \proj_{\Tr}(D)$.}
\end{proof} \end{proof}
\begin{definition} \begin{definition}
An analytic set $B$ in some Polish space $Y$ An analytic set $B$ in some Polish space $Y$
is \vocab{complete analytic} (\vocab{$\Sigma^1_1$-complete}) is \vocab{complete analytic} (\vocab{$\Sigma^1_1$-complete})
\gist{%
iff for any analytic $A \in \Sigma^1_1(X)$ for some Polish space $X$, iff for any analytic $A \in \Sigma^1_1(X)$ for some Polish space $X$,
there exists a Borel function $f\colon X\to Y$ there exists a Borel function $f\colon X\to Y$
such that $x \in A \iff f(x) \in B$. such that $x \in A \iff f(x) \in B$,
i.e.~$f^{-1}(B) = A$.
}{%
iff for any $A \in \Sigma^1_1(X)$, $X$ Polish
there exists $f\colon X \to Y$ Borel such that $f^{-1}(B) = A$.}
Similarly, define \vocab{complete coanalytic} (\vocab{$\Pi^1_1$-complete}). \gist{%
Similarly, a conalytic set $B$ is called
\vocab{complete coanalytic} (\vocab{$\Pi^1_1$-complete})
iff for any $A \subseteq \Pi^1_1(X)$
there exists $f\colon X \to Y$ Borel such that $f^{-1}(B) = A$.
}{Similarly we define \vocab{complete coanalytic} / \vocab{$\Pi_1^1$-complete}.}
\end{definition} \end{definition}
\begin{observe} \begin{observe}
\leavevmode \leavevmode
\begin{itemize} \begin{itemize}
\item Complements of $\Sigma^1_1$-complete sets are $\Pi^1_1$-complete. \item Complements of $\Sigma^1_1$-complete sets are $\Pi^1_1$-complete.
\item $\Sigma^1_1$-complete sets are never Borel: \item $\Sigma^1_1$-complete sets are never Borel%
\gist{:
Suppose there is a $\Sigma^1_1$-complete set $B \in \cB(Y)$. Suppose there is a $\Sigma^1_1$-complete set $B \in \cB(Y)$.
Take $A \in \Sigma^1_1(X) \setminus \cB(X)$ Take $A \in \Sigma^1_1(X) \setminus \cB(X)$%
\footnote{e.g.~\yaref{thm:universals11}}
and $f\colon X \to Y$ Borel. and $f\colon X \to Y$ Borel.
But then $f^{-1}(B)$ is Borel. But then we get that $f^{-1}(B)$ is Borel $\lightning$.
}{.}
\end{itemize} \end{itemize}
\end{observe} \end{observe}
\begin{theorem} \begin{theorem}
\label{thm:lec12:1} \label{thm:lec12:1}
Suppose that $A \subseteq \cN$ is analytic. Suppose that $A \subseteq \cN$ is analytic.
Then there is $f\colon \cN \to \Tr$\todo{Borel?} \gist{%
such that $x \in A \iff f(x)$ is ill-founded. Then there is a continuous function $f\colon \cN \to \Tr$
such that $x \in A \iff f(x)$ is ill-founded,
i.e.~$A = f^{-1}(\IF)$.
}{%
Then there exists $f\colon \cN \to \Tr$ continuous
such that $A = f^{-1}(\IF)$.
}
\end{theorem} \end{theorem}
For the proof we need some prerequisites: For the proof we need some prerequisites:
\begin{enumerate}[1.]
\item Recall that for $S$ countable, \gist{%
the pruned\footnote{no maximal elements, in particular this implies ill-founded if the tree is non empty.} trees Recall that for $S$ countable,
$T \subseteq S^{<\N}$ on $S$ correspond the pruned%
to closed subsets of $S^{\N}$: \footnote{no maximal elements,
in particular this implies ill-founded if the tree is non empty.
} trees $T \subseteq S^{<\N}$ on $S$ correspond
to closed subsets of $S^{\N}$:%
\footnote{cf.~\yaref{s3e1} (c)}
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
T &\longmapsto & [T]\\ T &\longmapsto & [T]\\
\{\alpha\defon{n} : \alpha \in D, n \in \N\} &\longmapsfrom & D\\ \{\alpha\defon{n} : \alpha \in D, n \in \N\} &\longmapsfrom & D\\
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
\todo{Copy from exercises} }{%
\item \leavevmode\begin{definition} For $S$ countable,
pruned trees on $S$ correspond to closed subsets of $S^{\N}$
via $T \mapsto [T]$.
}
\begin{definition}
If $T$ is a tree on $\N \times \N$ If $T$ is a tree on $\N \times \N$
and $x \in \cN$, and $x \in \cN$,
then the \vocab{section at $x$} then the \vocab{section at $x$}
%denoted $T(x)$, denoted $T(x)$,
is the following tree on $\N$ : is the following tree on $\N$ :
\[ \[
T(x) = \{s \in \N^{<\N} : (x\defon{|s|}, s) \in T\}. T(x) = \{s \in \N^{<\N} : (x\defon{|s|}, s) \in T\}.
\] \]
\end{definition} \end{definition}
\item \leavevmode
\begin{proposition} \begin{proposition}
\label{prop:lec12:2} \label{prop:lec12:2}
Let $A \subseteq \cN$. Let $A \subseteq \cN$.
@ -89,22 +117,26 @@ For the proof we need some prerequisites:
\end{itemize} \end{itemize}
\end{proposition} \end{proposition}
\begin{proof} \begin{proof}
\gist{%
$A$ is analytic iff $A$ is analytic iff
there exists $F \overset{\text{closed}}{\subseteq} \N \times \N$ there exists $F \overset{\text{closed}}{\subseteq} (\N \times \N)^{\N}$
such that $A = \proj_1(F)$. such that $A = \proj_1(F)$.
But closed sets of $\N \times \N$ correspond to pruned trees, But closed sets of $\N^\N \times \N^{\N}$ correspond to pruned trees,
by the first point. by the first point.
}{Closed subsets of $\N^\N \times \N^\N$ correspond to pruned trees.}
\end{proof} \end{proof}
\end{enumerate}
\begin{refproof}{thm:lec12:1} \begin{refproof}{thm:lec12:1}
\gist{%
Take a tree $T$ on $\N \times \N$ Take a tree $T$ on $\N \times \N$
as in \autoref{prop:lec12:2}, i.e.~$A = \proj_1([T])$. as in \autoref{prop:lec12:2}, i.e.~$A = \proj_1([T])$.
}{Write $A = \proj_1([T])$ for a pruned tree $T$ on $\N \times \N$.}
Consider Consider
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
f\colon \cN &\longrightarrow & \Tr \\ f\colon \cN &\longrightarrow & \Tr \\
x &\longmapsto & T(x). x &\longmapsto & T(x).
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
Clearly $x \in A \iff f(x)$ is ill-founded. \gist{%
Clearly $x \in A \iff f(x) \in \IF$.
$f$ is continuous: $f$ is continuous:
Let $x\defon{n} = y\defon{n}$ for some $n \in \N$. Let $x\defon{n} = y\defon{n}$ for some $n \in \N$.
Then for all $m \le n, s,t \in \N^{<\N}$ Then for all $m \le n, s,t \in \N^{<\N}$
@ -116,7 +148,8 @@ For the proof we need some prerequisites:
\end{itemize} \end{itemize}
So if $x\defon{n} = y\defon{n}$, So if $x\defon{n} = y\defon{n}$,
then $t \in T(x) \iff t \in T(y)$ as long as $|t| \le n$.. then $t \in T(x) \iff t \in T(y)$ as long as $|t| \le n$.
}{}
\end{refproof} \end{refproof}
\begin{corollary} \begin{corollary}
@ -125,7 +158,9 @@ For the proof we need some prerequisites:
\end{corollary} \end{corollary}
\begin{proof} \begin{proof}
Let $X$ be Polish. Let $X$ be Polish.
Suppose that $A \subseteq X$ is analytic and uncountable. Suppose that $A \subseteq X$ is analytic and uncountable%
\gist{}{ (trivial for countable)}.
Then Then
% https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIl0sWzEsMCwiXFxjTiJdLFsyLDAsIlxcVHIiXSxbMCwxLCJBIl0sWzEsMSwiYihBKSJdLFsxLDIsImYiXSxbMCwxLCJiIl0sWzMsMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNCwxLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ== % https://q.uiver.app/#q=WzAsNSxbMCwwLCJYIl0sWzEsMCwiXFxjTiJdLFsyLDAsIlxcVHIiXSxbMCwxLCJBIl0sWzEsMSwiYihBKSJdLFsxLDIsImYiXSxbMCwxLCJiIl0sWzMsMCwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNCwxLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dXQ==
\[\begin{tikzcd} \[\begin{tikzcd}
@ -138,6 +173,7 @@ For the proof we need some prerequisites:
\end{tikzcd}\] \end{tikzcd}\]
where $f$ is chosen as in \yaref{thm:lec12:1}. where $f$ is chosen as in \yaref{thm:lec12:1}.
\gist{%
If $X$ is Polish and countable and $A \subseteq X$ analytic, If $X$ is Polish and countable and $A \subseteq X$ analytic,
just consider just consider
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}
@ -148,6 +184,7 @@ For the proof we need some prerequisites:
\end{cases} \end{cases}
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
where $a \in \IF$ and $b \not\in \IF$ are chosen arbitrarily. where $a \in \IF$ and $b \not\in \IF$ are chosen arbitrarily.
}{}
\end{proof} \end{proof}
\subsection{Linear Orders} \subsection{Linear Orders}
@ -161,7 +198,7 @@ Let
\[ \[
\WO \coloneqq \{x \in \LO: x \text{ is a well ordering}\}. \WO \coloneqq \{x \in \LO: x \text{ is a well ordering}\}.
\] \]
\gist{%
Recall that Recall that
\begin{itemize} \begin{itemize}
\item $(A,<)$ is a well ordering iff there are no infinite descending chains. \item $(A,<)$ is a well ordering iff there are no infinite descending chains.
@ -173,6 +210,7 @@ Recall that
Let $(A, <_A) \prec (B, <_B)$ denote that Let $(A, <_A) \prec (B, <_B)$ denote that
$(A, <_A)$ is isomorphic to a proper initial segment of $(B, <_B)$. $(A, <_A)$ is isomorphic to a proper initial segment of $(B, <_B)$.
\end{itemize} \end{itemize}
}{}
\begin{definition} \begin{definition}
A \vocab{rank} on some set $C$ A \vocab{rank} on some set $C$
@ -181,6 +219,7 @@ Recall that
\phi\colon C \to \Ord. \phi\colon C \to \Ord.
\] \]
\end{definition} \end{definition}
\gist{%
\begin{example} \begin{example}
Let $C = \WO$ Let $C = \WO$
and and
@ -190,4 +229,4 @@ Recall that
where $\phi((A,<_A))$ is the unique ordinal where $\phi((A,<_A))$ is the unique ordinal
isomorphic to $(A, <_A)$. isomorphic to $(A, <_A)$.
\end{example} \end{example}
}{}

View file

@ -1,11 +1,12 @@
\lecture{13}{2023-11-08}{} \lecture{13}{2023-11-08}{}
\gist{%
% Recap % Recap
$\LO = \{x \in 2^{\N\times \N} : x \text{ is a linear order}\} $. $\LO = \{x \in 2^{\N\times \N} : x \text{ is a linear order}\} $.
$\LO \subseteq 2^{\N \times \N}$ is closed $\LO \subseteq 2^{\N \times \N}$ is closed
and $\WO = \{x \in \LO: x \text{ is a wellordering}\} $ and $\WO = \{x \in \LO: x \text{ is a wellordering}\} $
is coanalytic in $\LO$. is coanalytic in $\LO$.
% End Recap % End Recap
}{}
Another way to code linear orders: Another way to code linear orders:
@ -32,6 +33,7 @@ with $(f^{-1}(\{1\}), <)$.
and $[\alpha_i, \alpha_{i+1})$ to $(i,i+1)$. and $[\alpha_i, \alpha_{i+1})$ to $(i,i+1)$.
\end{proof} \end{proof}
\begin{definition}[\vocab{Kleene-Brouwer ordering}] \begin{definition}[\vocab{Kleene-Brouwer ordering}]
Let $(A,<)$ be a linear order and $A$ countable. Let $(A,<)$ be a linear order and $A$ countable.
We define the linear order $<_{KB}$ on $A^{<\N}$ We define the linear order $<_{KB}$ on $A^{<\N}$
@ -55,6 +57,7 @@ with $(f^{-1}(\{1\}), <)$.
$(T, <_{KB}\defon{T})$ is well ordered. $(T, <_{KB}\defon{T})$ is well ordered.
\end{proposition} \end{proposition}
\begin{proof} \begin{proof}
\gist{%
If $T$ is ill-founded and $x \in [T]$, If $T$ is ill-founded and $x \in [T]$,
then for all $n$, we have $x\defon{n+1} <_{KB} x\defon{n}$. then for all $n$, we have $x\defon{n+1} <_{KB} x\defon{n}$.
Thus $(T, <_{KB}\defon{T})$ is not well ordered. Thus $(T, <_{KB}\defon{T})$ is not well ordered.
@ -73,7 +76,11 @@ with $(f^{-1}(\{1\}), <)$.
Let $a_1 \coloneqq s_{n_1}(1)$ Let $a_1 \coloneqq s_{n_1}(1)$
and so on. and so on.
Then $(a_0,a_1,a_2, \ldots) \in [T]$. Then $(a_0,a_1,a_2, \ldots) \in [T]$.
}{easy}
\end{proof} \end{proof}
% TODO ANKI-MARKER
\begin{theorem}[Lusin-Sierpinski] \begin{theorem}[Lusin-Sierpinski]
The set $\LO \setminus \WO$ The set $\LO \setminus \WO$
(resp.~$2^{\Q} \setminus \WO$) (resp.~$2^{\Q} \setminus \WO$)

View file

@ -85,9 +85,8 @@
\[ \[
\forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast). \forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast).
\] \]
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$. We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
\todo{missing picture \footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}}
\url{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}}
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}

View file

@ -175,9 +175,10 @@ By Zorn's lemma, this will follow from
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
The topology induced by the metric The topology induced by the metric
is given by basic open subsets\footnote{see Exercise Sheet 9% TODO REF is given by basic open subsets\footnote{cf.~\yaref{s9e2}}
} of the form
$[U_0; U_1,\ldots, U_n]$, $U_0,\ldots, U_n \overset{\text{open}}{\subseteq} X$, $[U_0; U_1,\ldots, U_n]$,
for $U_0,\ldots, U_n \overset{\text{open}}{\subseteq} X$,
where where
\[ \[
[U_0; U_1,\ldots,U_n] \coloneqq [U_0; U_1,\ldots,U_n] \coloneqq
@ -188,8 +189,8 @@ By Zorn's lemma, this will follow from
We want to view flows as a metric space. We want to view flows as a metric space.
For a fixed compact metric space $X$, For a fixed compact metric space $X$,
we can view the flows $(X,\Z)$ as a subset of $\cC(X,X)$. we can view the flows $(X,\Z)$ as a subset of $\cC(X,X)$.
Note that $\cC(X,X)$ is Polish. Note that $\cC(X,X)$ is Polish.\footnote{cf.~\yaref{s1e4}}
Then the minimal flows on $X$ are a Borel subset of $\cC(X,X)$. Then the minimal flows on $X$ are a Borel subset of $\cC(X,X)$.\footnote{Exercise} % TODO
However we do not want to consider only flows on a fixed space $X$, However we do not want to consider only flows on a fixed space $X$,
but we want to look all flows at the same time. but we want to look all flows at the same time.

View file

@ -27,8 +27,10 @@
\begin{definition} \begin{definition}
A topological space is \vocab{Lindelöf} A topological space is \vocab{Lindelöf}
if every open cover has a countable subcover. iff every open cover has a countable subcover.
\end{definition} \end{definition}
\begin{fact} \begin{fact}
Let $X$ be a metric space. Let $X$ be a metric space.
If $X$ is Lindelöf, If $X$ is Lindelöf,
@ -64,5 +66,12 @@
and Lindelöf coincide. and Lindelöf coincide.
In arbitrary topological spaces, In arbitrary topological spaces,
Lindelöf is the strongest of these notions. Lindelöf is the weakest of these notions.
\end{remark} \end{remark}
\begin{definition}+
A metric space $X$ is \vocab{totally bounded}
iff for every $\epsilon > 0$ there exists
a finite set of points $x_1,\ldots,x_n$
such that $X = \bigcup_{i=1}^n B_{\epsilon}(x_i)$.
\end{definition}

View file

@ -140,15 +140,6 @@ amounts to a finite number of conditions on the preimage.
\end{pmatrix*}&\longmapsfrom & \beta \in \Homeo(X). \end{pmatrix*}&\longmapsfrom & \beta \in \Homeo(X).
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
Clearly this has the desired properties. Clearly this has the desired properties.
\item We have
\begin{IEEEeqnarray*}{Cl}
& \Z \circlearrowright X \text{ has a dense orbit}\\
\iff& \exists x \in X.~ \overline{\Z\cdot x} = X\\
\iff& \exists x \in X.~\forall U\overset{\text{open}}{\subseteq} X.~\exists z \in \Z.~
z \cdot x \in U\\
\iff&\exists x \in X.~\forall U \overset{\text{open}}{\subseteq} X.~
\exists z \in \Z.~f^z(x) \in U.
\end{IEEEeqnarray*}
\item Let $X$ be a compact Polish space. \item Let $X$ be a compact Polish space.
What is the Borel complexity of $\Homeo(X)$ inside $\cC(X,X)$? What is the Borel complexity of $\Homeo(X)$ inside $\cC(X,X)$?
@ -160,14 +151,9 @@ amounts to a finite number of conditions on the preimage.
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
by the general fact by the general fact
\begin{fact} \begin{fact}
Let $X$ be comapct and $Y$ Hausdorff, Let $X$ be compact and $Y$ Hausdorff,
$f\colon X \to Y$ a continuous bijection. $f\colon X \to Y$ a continuous bijection.
Then $f$ is a homeomorphism. Then $f$ is a homeomorphism.
\end{fact} \end{fact}
\item It suffices to check the condition from part (b)
for open sets $U$ of a countable basis
and points $x \in X$ belonging to a countable dense subset.
Replacing quantifiers by unions resp.~intersections
gives that $D$ is Borel.
\end{itemize} \end{itemize}

146
inputs/tutorial_13.tex Normal file
View file

@ -0,0 +1,146 @@
\tutorial{13}{2024-01-23}{}
Continuation of sheet 8, exercise 4.
% Whiteboard https://wbo.ophir.dev/boards/Dphc7eylJJcIA0WbQsn7jzec1domqyx51gXb5qe6rzw-#263,0,0.5
\begin{definition}
Let $X$ be a compact metric space.
For $K \subseteq X$ compact and $U \overset{\text{open}}{\subseteq} X$
let
\[
S_{K,U} \coloneqq \{f \in \cC(X,X): f(K) \subseteq U\}.
\]
The \vocab{compact open topology} on $\cC(X,X)$
is the topology that has $S_{K,U}$ as a subbase.
\end{definition}
\begin{fact}
If $X$ is compact,
then the compact open topology
is the topology induced by the uniform metric $d_\infty$.
\end{fact}
\begin{proof}
Take some $S_{K,U}$. We need to show that this can be written
as a union of open $d_{\infty}$-balls.
Let $f_0 \in S_{K,U}$.
Consider the continuous function $d(-, U^c)$.
Since $f_0(K)$ is compact,
there exists $\epsilon \coloneqq \min d(f_0(K), U^c)$
and $B_{\epsilon}(f_0) \subseteq S_{K,U}$.
On the other hand, consider $B_{\epsilon}(f_0)$ for some $\epsilon > 0$
and $f_0 \in \cC(X,X)$.
As $f_0$ is uniformly continuous,
there exists $\delta > 0$ such that $d(x,x') < \delta \implies d(f_0(x), f_0(x')) < \frac{\epsilon}{3}$.
Cover $X$ with finitely many $\delta$-balls $B_\delta(a_1), \ldots, B_{\delta}(a_k)$.
Then
\[f_0(\overline{B_{\delta}(a_i)}) \subseteq \overline{f_0(B_{\delta}(a_i)} \subseteq \overline{B_{\frac{\epsilon}{3}}(f_0(a_i))} \subseteq B_{\frac{\epsilon}{2}}(f_0(a_i)).\]
For $i \le k$, let $S_i \coloneqq S_{\overline{B_{\delta}(a_i)}, B_{\frac{\epsilon}{2}}(f_0(a_i))}$.
Take $\bigcap_{i \le k} S_i$. This is open
in the compact open topology and
$B_{\epsilon}(f_0) \subseteq \bigcap_{i \le k} S_i$.
\end{proof}
\begin{claim}
$f \in \cC(X,X)$ is surjective
iff for all basic open $\emptyset\neq U \subseteq X$
there exists a basic open $\emptyset \neq V \subseteq X$
with $f(\overline{V}) \subseteq U$.
Note that we can write this as a $G_\delta$-condition.
\end{claim}
\begin{subproof}
Take $B_\epsilon(f(x_0))\subseteq U$.
Then there exists $\delta > 0$
such that $f(B_{\delta}(x_0)) \subseteq B_{\frac{\epsilon}{2}}(f(x_0))$
hence $f(\overline{B_{\delta}(x_0)}) \subseteq B_\epsilon(f(x_0))$.
For the other direction take $y \in X$.
We want to find a preimage.
For every $B_{\frac{1}{n}}(y)$,
there exists a basic open set $V_n$ with $f(\overline{V}) \subseteq B_{\frac{1}{n}}(y)$.
Take $x_n \in V_n$.
Since $X$ is compact, it is sequentially compact,
so there exists a converging subsequence.
Wlog.~$x_n \to x$,
so $f(x_n) \to f(x) = y$.
\end{subproof}
\begin{claim}
$f \in \cC(X,X)$ is injective iff
for all basic open $U$,$V$
with $\overline{U} \cap \overline{V} = \emptyset$
we have $f(\overline{U}) \cap f(\overline{V}) = \emptyset$.
This is a $G_\delta$-condition,
since we can write it as
\[
\bigcap_{U,V} S_{\overline{U}, f(\overline{V})^c}.
\]
\end{claim}
\begin{subproof}
$\implies$ is trivial.
$\impliedby$ follows since for all pairs $x,y \in X$,
we can find $x \in U$, $y \in V$ such that $\overline{U} \cap \overline{V} = \emptyset$.
\end{subproof}
Hence $\Homeo(X,X)$ is $G_\delta$.
In particular it is a Polish space.
Let $D$ be the set of $\Z$-flows with dense orbit.
\begin{claim}
$f \in D$ $\iff$
for all basic open $U,V \subseteq X$,
there exists $n \in \Z$
such that $f^n(U) \cap V \neq \emptyset$.
\end{claim}
\begin{subproof}
Suppose that the orbit of $x_0 \in X$ is dense.
Then there exist $k,l \in \Z$
such that $f^k(x_0)\in U$ and $f^l(x_0) \in V$,
so $f^{l-k} U \cap V \neq \emptyset$.
For basic open sets $V$
let
\[
A_V \coloneqq \{ x \in X: \exists n.~ f^n(x) \in V\}.
\]
By assumption, all the $A_V$ are dense.
Hence $\bigcap_{V}A_V$ is dense by the \yaref{thm:bct}.
$A_V = \bigcup_{n \in \Z} f^n(V)$ is open.
\end{subproof}
\begin{claim}
The condition can be written as a $G_\delta$ set.
\end{claim}
\begin{subproof}
For $f_0(U) \cap V \neq \emptyset$
take $u \in U$ such that $f_0(u) \in V$.
Then there exists $\epsilon > 0$ such that $B_{\epsilon}(f_0(u)) \subseteq U$,
hence $B_{\epsilon}(f_0)$ is an open neighbourhood contained
in $\{f : f(U) \cap V \neq \emptyset \} $.
For $n = 2$ note that
$d(f^2(u), f^2_0(u) \le d(f(f(u)), f_0(f(u))) + d(f_0(f(u)), f_0(f_0(u)))$.
The first part can be bounded by $d(f,f_0)$.
For the second part,
note that there exists $\delta$ such that
\[d(a,b) < \delta \implies d(f_0(a), f_0(b)) < \frac{\epsilon}{2}.\]
Let $\eta \coloneqq \min \{\delta, \frac{\epsilon}{2}\}$
and consider $d_\infty(f,f_0) < \epsilon$.
For other $n$ it is some more work, which is left as an exercise.
\end{subproof}

View file

@ -1,6 +1,10 @@
\NeedsTeXFormat{LaTeX2e} \NeedsTeXFormat{LaTeX2e}
\ProvidesPackage{jrpie-gist}[2023/01/22 - gist version for lecture notes] \ProvidesPackage{jrpie-gist}[2023/01/22 - gist version for lecture notes]
% TODO gist info
% TODO link to long version (provide link to main document)
% TODO \phantomsection to cross link
\newcommand{\gist}[2]{% \newcommand{\gist}[2]{%
\ifcsname EnableGist\endcsname% \ifcsname EnableGist\endcsname%
#2% #2%

View file

@ -66,6 +66,7 @@
\input{inputs/tutorial_07} \input{inputs/tutorial_07}
\input{inputs/tutorial_08} \input{inputs/tutorial_08}
\input{inputs/tutorial_09} \input{inputs/tutorial_09}
\input{inputs/tutorial_13} % sic!
\input{inputs/tutorial_10} \input{inputs/tutorial_10}
\input{inputs/tutorial_11} \input{inputs/tutorial_11}
\input{inputs/tutorial_12b} \input{inputs/tutorial_12b}