This commit is contained in:
parent
7746866373
commit
6670dfbf6f
7 changed files with 149 additions and 133 deletions
|
@ -233,6 +233,7 @@ Recall:
|
|||
correspond to metrics witnessing that the flow is isometric.
|
||||
\end{remark}
|
||||
\begin{proposition}
|
||||
\label{prop:isomextdistal}
|
||||
An isometric extension of a distal flow is distal.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
|
@ -263,11 +264,12 @@ Recall:
|
|||
% TODO THE inverse limit is A limit
|
||||
of $\Sigma$ iff
|
||||
\[
|
||||
\forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
|
||||
\forall x_1 \neq x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\begin{proposition}
|
||||
\label{prop:limitdistal}
|
||||
A limit of distal flows is distal.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
|
|
|
@ -1,5 +1,4 @@
|
|||
\lecture{16}{2023-12-08}{}
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
$X$ is always compact metrizable.
|
||||
|
||||
|
@ -18,16 +17,19 @@ $X$ is always compact metrizable.
|
|||
% and $h\colon x \mapsto x + \alpha$.\footnote{Again $x + \alpha$ denotes $x \cdot \alpha$ in $\C$.}
|
||||
% \end{example}
|
||||
\begin{proof}
|
||||
% TODO TODO TODO Think!
|
||||
The action of $1$ determines $h$.
|
||||
Consider
|
||||
\[
|
||||
\{h^n : n \in \Z\} \subseteq \cC(X,X) = \{f\colon X \to X : f \text{ continuous}\},
|
||||
\{h^n : n \in \Z\} \subseteq \cC(X,X)\gist{ = \{f\colon X \to X : f \text{ continuous}\}}{},
|
||||
\]
|
||||
where the topology is the uniform convergence topology. % TODO REF EXERCISE
|
||||
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
||||
Since
|
||||
Since the family $\{h^n : n \in \Z\}$ is uniformly equicontinuous,
|
||||
i.e.~
|
||||
\[
|
||||
\forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon
|
||||
\forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon,
|
||||
% Here we use isometric
|
||||
\]
|
||||
we have by the Arzel\`a-Ascoli-Theorem % TODO REF
|
||||
that $G$ is compact.
|
||||
|
@ -126,8 +128,8 @@ $X$ is always compact metrizable.
|
|||
Every quasi-isometric flow is distal.
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
\todo{TODO}
|
||||
% The trivial flow is distal.
|
||||
The trivial flow is distal.
|
||||
Apply \yaref{prop:isomextdistal} and \yaref{prop:limitdistal}.
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}[Furstenberg]
|
||||
|
@ -199,7 +201,8 @@ The Hilbert cube $\bH = [0,1]^{\N}$
|
|||
embeds all compact metric spaces.
|
||||
Thus we can consider $K(\bH)$,
|
||||
the space of compact subsets of $\bH$.
|
||||
$K(\bH)$ is a Polish space.\todo{Exercise}
|
||||
$K(\bH)$ is a Polish space.\footnote{cf.~\yaref{s9e2}, \yaref{s12e4}}
|
||||
% TODO LEARN EXERCISES
|
||||
Consider $K(\bH^2)$.
|
||||
A flow $\Z \acts X$ corresponds to the graph of
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
\subsection{The Ellis semigroup}
|
||||
% TODO ANKI-MARKER
|
||||
\lecture{17}{2023-12-12}{The Ellis semigroup}
|
||||
|
||||
Let $(X, d)$ be a compact metric space
|
||||
|
|
|
@ -68,7 +68,7 @@ This will follow from the following lemma:
|
|||
we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$.
|
||||
\end{refproof}
|
||||
\begin{refproof}{lem:ftophelper}%
|
||||
\footnote{This was not covered in class.}
|
||||
\notexaminable{\footnote{This was not covered in class.}
|
||||
|
||||
Let $T = \bigcup_n T_n$,% TODO Why does this exist?
|
||||
$T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and
|
||||
|
@ -123,6 +123,7 @@ This will follow from the following lemma:
|
|||
i.e.~$d(t_1t_0x, t_1t_0x') < b$
|
||||
and therefore
|
||||
$F(x,x'') = d(t_1t_0x, t_1t_0x'') < a$.
|
||||
}
|
||||
\end{refproof}
|
||||
|
||||
Now assume $Z = \{\star\}$.
|
||||
|
|
|
@ -145,7 +145,9 @@ For this we define
|
|||
This is the same as for iterated skew shifts.
|
||||
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
||||
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
||||
\item Minimality:
|
||||
\item Minimality:%
|
||||
\gist{%
|
||||
\footnote{This is not relevant for the exam.}
|
||||
|
||||
Let $\langle E_n : n < \omega \rangle$
|
||||
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
||||
|
@ -163,8 +165,12 @@ For this we define
|
|||
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
||||
Since the flow is distal, it suffices to show
|
||||
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
||||
}{ Not relevant for the exam.}
|
||||
|
||||
\item Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||
\item The order of the flow is $\eta$:%
|
||||
\gist{%
|
||||
\footnote{This is not relevant for the exam.}
|
||||
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||
Consider the flows we get from $(f_i)_{i < j}$
|
||||
resp.~$(f_i)_{i \le j}$
|
||||
denoted by $X_{<j}$ resp.~$X_{\le j}$.
|
||||
|
@ -186,7 +192,7 @@ For this we define
|
|||
&&\}
|
||||
\end{IEEEeqnarray*}
|
||||
Beleznay and Foreman show that this is open and dense.%
|
||||
\footnote{This is not relevant for the exam.}
|
||||
% TODO similarities to the lemma used today
|
||||
}{ Not relevant for the exam.}
|
||||
\end{itemize}
|
||||
\end{proof}
|
||||
|
|
|
@ -24,6 +24,7 @@ Let $I$ be a linear order
|
|||
\end{theorem}
|
||||
|
||||
\begin{proof}[sketch]
|
||||
\notexaminable{%
|
||||
Consider $\WO(\N) \subset \LO(\N)$.
|
||||
We know that this is $\Pi_1^1$-complete. % TODO ref
|
||||
|
||||
|
@ -65,6 +66,7 @@ Let $I$ be a linear order
|
|||
$T^{\alpha}_n \subseteq W^{\alpha}_n$,
|
||||
where $W^{\alpha}_n$ is an enumeration of $U_m^\alpha$,$V^\alpha_{j,m,n,\frac{p}{q}}$.
|
||||
Then $(f_i)_{i \in I} \in \bigcap_{n} T_{n}^\alpha$.
|
||||
}
|
||||
\end{proof}
|
||||
\begin{lemma}
|
||||
Let $\{(X_\xi, T) : \xi \le \eta\}$ be a normal
|
||||
|
|
|
@ -156,5 +156,6 @@
|
|||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
|
||||
\newcommand\nr[1]{\subsubsection{Exercise #1}\yalabel{Sheet \arabic{subsection}, Exercise #1}{E \arabic{subsection}.#1}{s\arabic{subsection}e#1}}
|
||||
\newcommand\notexaminable[1]{\gist{\footnote{Not relevant for the exam.}#1}{Not relevant for the exam.}}
|
||||
|
||||
\usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography}
|
||||
|
|
Loading…
Reference in a new issue