This commit is contained in:
parent
7746866373
commit
6670dfbf6f
7 changed files with 149 additions and 133 deletions
|
@ -233,6 +233,7 @@ Recall:
|
||||||
correspond to metrics witnessing that the flow is isometric.
|
correspond to metrics witnessing that the flow is isometric.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
|
\label{prop:isomextdistal}
|
||||||
An isometric extension of a distal flow is distal.
|
An isometric extension of a distal flow is distal.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
@ -263,11 +264,12 @@ Recall:
|
||||||
% TODO THE inverse limit is A limit
|
% TODO THE inverse limit is A limit
|
||||||
of $\Sigma$ iff
|
of $\Sigma$ iff
|
||||||
\[
|
\[
|
||||||
\forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
|
\forall x_1 \neq x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
|
||||||
\]
|
\]
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
|
\label{prop:limitdistal}
|
||||||
A limit of distal flows is distal.
|
A limit of distal flows is distal.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
|
|
@ -1,5 +1,4 @@
|
||||||
\lecture{16}{2023-12-08}{}
|
\lecture{16}{2023-12-08}{}
|
||||||
% TODO ANKI-MARKER
|
|
||||||
|
|
||||||
$X$ is always compact metrizable.
|
$X$ is always compact metrizable.
|
||||||
|
|
||||||
|
@ -18,16 +17,19 @@ $X$ is always compact metrizable.
|
||||||
% and $h\colon x \mapsto x + \alpha$.\footnote{Again $x + \alpha$ denotes $x \cdot \alpha$ in $\C$.}
|
% and $h\colon x \mapsto x + \alpha$.\footnote{Again $x + \alpha$ denotes $x \cdot \alpha$ in $\C$.}
|
||||||
% \end{example}
|
% \end{example}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
% TODO TODO TODO Think!
|
||||||
The action of $1$ determines $h$.
|
The action of $1$ determines $h$.
|
||||||
Consider
|
Consider
|
||||||
\[
|
\[
|
||||||
\{h^n : n \in \Z\} \subseteq \cC(X,X) = \{f\colon X \to X : f \text{ continuous}\},
|
\{h^n : n \in \Z\} \subseteq \cC(X,X)\gist{ = \{f\colon X \to X : f \text{ continuous}\}}{},
|
||||||
\]
|
\]
|
||||||
where the topology is the uniform convergence topology. % TODO REF EXERCISE
|
where the topology is the uniform convergence topology. % TODO REF EXERCISE
|
||||||
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
||||||
Since
|
Since the family $\{h^n : n \in \Z\}$ is uniformly equicontinuous,
|
||||||
|
i.e.~
|
||||||
\[
|
\[
|
||||||
\forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon
|
\forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon,
|
||||||
|
% Here we use isometric
|
||||||
\]
|
\]
|
||||||
we have by the Arzel\`a-Ascoli-Theorem % TODO REF
|
we have by the Arzel\`a-Ascoli-Theorem % TODO REF
|
||||||
that $G$ is compact.
|
that $G$ is compact.
|
||||||
|
@ -126,8 +128,8 @@ $X$ is always compact metrizable.
|
||||||
Every quasi-isometric flow is distal.
|
Every quasi-isometric flow is distal.
|
||||||
\end{corollary}
|
\end{corollary}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
\todo{TODO}
|
The trivial flow is distal.
|
||||||
% The trivial flow is distal.
|
Apply \yaref{prop:isomextdistal} and \yaref{prop:limitdistal}.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
\begin{theorem}[Furstenberg]
|
\begin{theorem}[Furstenberg]
|
||||||
|
@ -199,7 +201,8 @@ The Hilbert cube $\bH = [0,1]^{\N}$
|
||||||
embeds all compact metric spaces.
|
embeds all compact metric spaces.
|
||||||
Thus we can consider $K(\bH)$,
|
Thus we can consider $K(\bH)$,
|
||||||
the space of compact subsets of $\bH$.
|
the space of compact subsets of $\bH$.
|
||||||
$K(\bH)$ is a Polish space.\todo{Exercise}
|
$K(\bH)$ is a Polish space.\footnote{cf.~\yaref{s9e2}, \yaref{s12e4}}
|
||||||
|
% TODO LEARN EXERCISES
|
||||||
Consider $K(\bH^2)$.
|
Consider $K(\bH^2)$.
|
||||||
A flow $\Z \acts X$ corresponds to the graph of
|
A flow $\Z \acts X$ corresponds to the graph of
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
|
|
|
@ -1,4 +1,5 @@
|
||||||
\subsection{The Ellis semigroup}
|
\subsection{The Ellis semigroup}
|
||||||
|
% TODO ANKI-MARKER
|
||||||
\lecture{17}{2023-12-12}{The Ellis semigroup}
|
\lecture{17}{2023-12-12}{The Ellis semigroup}
|
||||||
|
|
||||||
Let $(X, d)$ be a compact metric space
|
Let $(X, d)$ be a compact metric space
|
||||||
|
|
|
@ -68,7 +68,7 @@ This will follow from the following lemma:
|
||||||
we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$.
|
we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$.
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
\begin{refproof}{lem:ftophelper}%
|
\begin{refproof}{lem:ftophelper}%
|
||||||
\footnote{This was not covered in class.}
|
\notexaminable{\footnote{This was not covered in class.}
|
||||||
|
|
||||||
Let $T = \bigcup_n T_n$,% TODO Why does this exist?
|
Let $T = \bigcup_n T_n$,% TODO Why does this exist?
|
||||||
$T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and
|
$T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and
|
||||||
|
@ -123,6 +123,7 @@ This will follow from the following lemma:
|
||||||
i.e.~$d(t_1t_0x, t_1t_0x') < b$
|
i.e.~$d(t_1t_0x, t_1t_0x') < b$
|
||||||
and therefore
|
and therefore
|
||||||
$F(x,x'') = d(t_1t_0x, t_1t_0x'') < a$.
|
$F(x,x'') = d(t_1t_0x, t_1t_0x'') < a$.
|
||||||
|
}
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
||||||
Now assume $Z = \{\star\}$.
|
Now assume $Z = \{\star\}$.
|
||||||
|
|
|
@ -145,7 +145,9 @@ For this we define
|
||||||
This is the same as for iterated skew shifts.
|
This is the same as for iterated skew shifts.
|
||||||
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
|
||||||
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
|
||||||
\item Minimality:
|
\item Minimality:%
|
||||||
|
\gist{%
|
||||||
|
\footnote{This is not relevant for the exam.}
|
||||||
|
|
||||||
Let $\langle E_n : n < \omega \rangle$
|
Let $\langle E_n : n < \omega \rangle$
|
||||||
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
be an enumeration of a countable basis for $\mathbb{K}^I$.
|
||||||
|
@ -163,8 +165,12 @@ For this we define
|
||||||
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
||||||
Since the flow is distal, it suffices to show
|
Since the flow is distal, it suffices to show
|
||||||
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
||||||
|
}{ Not relevant for the exam.}
|
||||||
|
|
||||||
\item Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
\item The order of the flow is $\eta$:%
|
||||||
|
\gist{%
|
||||||
|
\footnote{This is not relevant for the exam.}
|
||||||
|
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||||
Consider the flows we get from $(f_i)_{i < j}$
|
Consider the flows we get from $(f_i)_{i < j}$
|
||||||
resp.~$(f_i)_{i \le j}$
|
resp.~$(f_i)_{i \le j}$
|
||||||
denoted by $X_{<j}$ resp.~$X_{\le j}$.
|
denoted by $X_{<j}$ resp.~$X_{\le j}$.
|
||||||
|
@ -186,7 +192,7 @@ For this we define
|
||||||
&&\}
|
&&\}
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
Beleznay and Foreman show that this is open and dense.%
|
Beleznay and Foreman show that this is open and dense.%
|
||||||
\footnote{This is not relevant for the exam.}
|
|
||||||
% TODO similarities to the lemma used today
|
% TODO similarities to the lemma used today
|
||||||
|
}{ Not relevant for the exam.}
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
|
@ -24,6 +24,7 @@ Let $I$ be a linear order
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
\begin{proof}[sketch]
|
\begin{proof}[sketch]
|
||||||
|
\notexaminable{%
|
||||||
Consider $\WO(\N) \subset \LO(\N)$.
|
Consider $\WO(\N) \subset \LO(\N)$.
|
||||||
We know that this is $\Pi_1^1$-complete. % TODO ref
|
We know that this is $\Pi_1^1$-complete. % TODO ref
|
||||||
|
|
||||||
|
@ -65,6 +66,7 @@ Let $I$ be a linear order
|
||||||
$T^{\alpha}_n \subseteq W^{\alpha}_n$,
|
$T^{\alpha}_n \subseteq W^{\alpha}_n$,
|
||||||
where $W^{\alpha}_n$ is an enumeration of $U_m^\alpha$,$V^\alpha_{j,m,n,\frac{p}{q}}$.
|
where $W^{\alpha}_n$ is an enumeration of $U_m^\alpha$,$V^\alpha_{j,m,n,\frac{p}{q}}$.
|
||||||
Then $(f_i)_{i \in I} \in \bigcap_{n} T_{n}^\alpha$.
|
Then $(f_i)_{i \in I} \in \bigcap_{n} T_{n}^\alpha$.
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
Let $\{(X_\xi, T) : \xi \le \eta\}$ be a normal
|
Let $\{(X_\xi, T) : \xi \le \eta\}$ be a normal
|
||||||
|
|
|
@ -156,5 +156,6 @@
|
||||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||||
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
|
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
|
||||||
\newcommand\nr[1]{\subsubsection{Exercise #1}\yalabel{Sheet \arabic{subsection}, Exercise #1}{E \arabic{subsection}.#1}{s\arabic{subsection}e#1}}
|
\newcommand\nr[1]{\subsubsection{Exercise #1}\yalabel{Sheet \arabic{subsection}, Exercise #1}{E \arabic{subsection}.#1}{s\arabic{subsection}e#1}}
|
||||||
|
\newcommand\notexaminable[1]{\gist{\footnote{Not relevant for the exam.}#1}{Not relevant for the exam.}}
|
||||||
|
|
||||||
\usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography}
|
\usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography}
|
||||||
|
|
Loading…
Reference in a new issue