some changes
Some checks are pending
Build latex and deploy / checkout (push) Waiting to run

This commit is contained in:
Josia Pietsch 2024-02-04 00:40:13 +01:00
parent 7746866373
commit 6670dfbf6f
Signed by: josia
GPG key ID: E70B571D66986A2D
7 changed files with 149 additions and 133 deletions

View file

@ -233,6 +233,7 @@ Recall:
correspond to metrics witnessing that the flow is isometric. correspond to metrics witnessing that the flow is isometric.
\end{remark} \end{remark}
\begin{proposition} \begin{proposition}
\label{prop:isomextdistal}
An isometric extension of a distal flow is distal. An isometric extension of a distal flow is distal.
\end{proposition} \end{proposition}
\begin{proof} \begin{proof}
@ -263,11 +264,12 @@ Recall:
% TODO THE inverse limit is A limit % TODO THE inverse limit is A limit
of $\Sigma$ iff of $\Sigma$ iff
\[ \[
\forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2). \forall x_1 \neq x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
\] \]
\end{definition} \end{definition}
\begin{proposition} \begin{proposition}
\label{prop:limitdistal}
A limit of distal flows is distal. A limit of distal flows is distal.
\end{proposition} \end{proposition}
\begin{proof} \begin{proof}

View file

@ -1,5 +1,4 @@
\lecture{16}{2023-12-08}{} \lecture{16}{2023-12-08}{}
% TODO ANKI-MARKER
$X$ is always compact metrizable. $X$ is always compact metrizable.
@ -18,16 +17,19 @@ $X$ is always compact metrizable.
% and $h\colon x \mapsto x + \alpha$.\footnote{Again $x + \alpha$ denotes $x \cdot \alpha$ in $\C$.} % and $h\colon x \mapsto x + \alpha$.\footnote{Again $x + \alpha$ denotes $x \cdot \alpha$ in $\C$.}
% \end{example} % \end{example}
\begin{proof} \begin{proof}
% TODO TODO TODO Think!
The action of $1$ determines $h$. The action of $1$ determines $h$.
Consider Consider
\[ \[
\{h^n : n \in \Z\} \subseteq \cC(X,X) = \{f\colon X \to X : f \text{ continuous}\}, \{h^n : n \in \Z\} \subseteq \cC(X,X)\gist{ = \{f\colon X \to X : f \text{ continuous}\}}{},
\] \]
where the topology is the uniform convergence topology. % TODO REF EXERCISE where the topology is the uniform convergence topology. % TODO REF EXERCISE
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$. Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
Since Since the family $\{h^n : n \in \Z\}$ is uniformly equicontinuous,
i.e.~
\[ \[
\forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon \forall \epsilon > 0.~\exists \delta > 0.~d(x,y) < \delta \implies \forall n.~d(h^n(x), h^n(y)) < \epsilon,
% Here we use isometric
\] \]
we have by the Arzel\`a-Ascoli-Theorem % TODO REF we have by the Arzel\`a-Ascoli-Theorem % TODO REF
that $G$ is compact. that $G$ is compact.
@ -126,8 +128,8 @@ $X$ is always compact metrizable.
Every quasi-isometric flow is distal. Every quasi-isometric flow is distal.
\end{corollary} \end{corollary}
\begin{proof} \begin{proof}
\todo{TODO} The trivial flow is distal.
% The trivial flow is distal. Apply \yaref{prop:isomextdistal} and \yaref{prop:limitdistal}.
\end{proof} \end{proof}
\begin{theorem}[Furstenberg] \begin{theorem}[Furstenberg]
@ -199,7 +201,8 @@ The Hilbert cube $\bH = [0,1]^{\N}$
embeds all compact metric spaces. embeds all compact metric spaces.
Thus we can consider $K(\bH)$, Thus we can consider $K(\bH)$,
the space of compact subsets of $\bH$. the space of compact subsets of $\bH$.
$K(\bH)$ is a Polish space.\todo{Exercise} $K(\bH)$ is a Polish space.\footnote{cf.~\yaref{s9e2}, \yaref{s12e4}}
% TODO LEARN EXERCISES
Consider $K(\bH^2)$. Consider $K(\bH^2)$.
A flow $\Z \acts X$ corresponds to the graph of A flow $\Z \acts X$ corresponds to the graph of
\begin{IEEEeqnarray*}{rCl} \begin{IEEEeqnarray*}{rCl}

View file

@ -1,4 +1,5 @@
\subsection{The Ellis semigroup} \subsection{The Ellis semigroup}
% TODO ANKI-MARKER
\lecture{17}{2023-12-12}{The Ellis semigroup} \lecture{17}{2023-12-12}{The Ellis semigroup}
Let $(X, d)$ be a compact metric space Let $(X, d)$ be a compact metric space

View file

@ -68,7 +68,7 @@ This will follow from the following lemma:
we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$. we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$.
\end{refproof} \end{refproof}
\begin{refproof}{lem:ftophelper}% \begin{refproof}{lem:ftophelper}%
\footnote{This was not covered in class.} \notexaminable{\footnote{This was not covered in class.}
Let $T = \bigcup_n T_n$,% TODO Why does this exist? Let $T = \bigcup_n T_n$,% TODO Why does this exist?
$T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and $T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and
@ -123,6 +123,7 @@ This will follow from the following lemma:
i.e.~$d(t_1t_0x, t_1t_0x') < b$ i.e.~$d(t_1t_0x, t_1t_0x') < b$
and therefore and therefore
$F(x,x'') = d(t_1t_0x, t_1t_0x'') < a$. $F(x,x'') = d(t_1t_0x, t_1t_0x'') < a$.
}
\end{refproof} \end{refproof}
Now assume $Z = \{\star\}$. Now assume $Z = \{\star\}$.

View file

@ -145,7 +145,9 @@ For this we define
This is the same as for iterated skew shifts. This is the same as for iterated skew shifts.
% TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$, % TODO since for $\overline{x}, \overline{y} \in \mathbb{K}^I$,
% $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$. % $d(x_\alpha, y_\alpha) = d((f(\overline{x})_\alpha, (f(\overline{y})_\alpha))$.
\item Minimality: \item Minimality:%
\gist{%
\footnote{This is not relevant for the exam.}
Let $\langle E_n : n < \omega \rangle$ Let $\langle E_n : n < \omega \rangle$
be an enumeration of a countable basis for $\mathbb{K}^I$. be an enumeration of a countable basis for $\mathbb{K}^I$.
@ -163,8 +165,12 @@ For this we define
is dense in $\overline{x} \mapsto f(\overline{x})$. is dense in $\overline{x} \mapsto f(\overline{x})$.
Since the flow is distal, it suffices to show Since the flow is distal, it suffices to show
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}). that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
}{ Not relevant for the exam.}
\item Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$. \item The order of the flow is $\eta$:%
\gist{%
\footnote{This is not relevant for the exam.}
Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
Consider the flows we get from $(f_i)_{i < j}$ Consider the flows we get from $(f_i)_{i < j}$
resp.~$(f_i)_{i \le j}$ resp.~$(f_i)_{i \le j}$
denoted by $X_{<j}$ resp.~$X_{\le j}$. denoted by $X_{<j}$ resp.~$X_{\le j}$.
@ -186,7 +192,7 @@ For this we define
&&\} &&\}
\end{IEEEeqnarray*} \end{IEEEeqnarray*}
Beleznay and Foreman show that this is open and dense.% Beleznay and Foreman show that this is open and dense.%
\footnote{This is not relevant for the exam.}
% TODO similarities to the lemma used today % TODO similarities to the lemma used today
}{ Not relevant for the exam.}
\end{itemize} \end{itemize}
\end{proof} \end{proof}

View file

@ -24,6 +24,7 @@ Let $I$ be a linear order
\end{theorem} \end{theorem}
\begin{proof}[sketch] \begin{proof}[sketch]
\notexaminable{%
Consider $\WO(\N) \subset \LO(\N)$. Consider $\WO(\N) \subset \LO(\N)$.
We know that this is $\Pi_1^1$-complete. % TODO ref We know that this is $\Pi_1^1$-complete. % TODO ref
@ -65,6 +66,7 @@ Let $I$ be a linear order
$T^{\alpha}_n \subseteq W^{\alpha}_n$, $T^{\alpha}_n \subseteq W^{\alpha}_n$,
where $W^{\alpha}_n$ is an enumeration of $U_m^\alpha$,$V^\alpha_{j,m,n,\frac{p}{q}}$. where $W^{\alpha}_n$ is an enumeration of $U_m^\alpha$,$V^\alpha_{j,m,n,\frac{p}{q}}$.
Then $(f_i)_{i \in I} \in \bigcap_{n} T_{n}^\alpha$. Then $(f_i)_{i \in I} \in \bigcap_{n} T_{n}^\alpha$.
}
\end{proof} \end{proof}
\begin{lemma} \begin{lemma}
Let $\{(X_\xi, T) : \xi \le \eta\}$ be a normal Let $\{(X_\xi, T) : \xi \le \eta\}$ be a normal

View file

@ -156,5 +156,6 @@
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}} \newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
\newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}} \newcommand\tutorial[3]{\hrule{\color{darkgray}\hfill{\tiny[Tutorial #1, #2]}}}
\newcommand\nr[1]{\subsubsection{Exercise #1}\yalabel{Sheet \arabic{subsection}, Exercise #1}{E \arabic{subsection}.#1}{s\arabic{subsection}e#1}} \newcommand\nr[1]{\subsubsection{Exercise #1}\yalabel{Sheet \arabic{subsection}, Exercise #1}{E \arabic{subsection}.#1}{s\arabic{subsection}e#1}}
\newcommand\notexaminable[1]{\gist{\footnote{Not relevant for the exam.}#1}{Not relevant for the exam.}}
\usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography} \usepackage[bibfile=bibliography/references.bib, imagefile=bibliography/images.bib]{mkessler-bibliography}