additional tutorial
This commit is contained in:
parent
53577d9b57
commit
5ed13d630f
9 changed files with 125 additions and 12 deletions
|
@ -197,8 +197,7 @@
|
|||
Let $X \neq \emptyset$ be a Polish space.
|
||||
Then there is a closed subset
|
||||
\[
|
||||
D \subseteq \N^\N \text{\reflectbox{$\coloneqq$}} \cN
|
||||
% TODO correct N for the Baire space?
|
||||
D \subseteq \N^\N \mathbin{\text{\reflectbox{$\coloneqq$}}} \cN
|
||||
\]
|
||||
and a continuous bijection from
|
||||
$D$ onto $X$ (the inverse does not need to be continuous).
|
||||
|
@ -239,7 +238,7 @@
|
|||
\end{enumerate}
|
||||
|
||||
\gist{%
|
||||
Suppose we already have $F_s \text{\reflectbox{$\coloneqq$}} F$.
|
||||
Suppose we already have $F_s \mathbin{\text{\reflectbox{$\coloneqq$}}} F$.
|
||||
We need to construct a partition $(F_i)_{i \in \N}$
|
||||
of $F$ with $\overline{F_i} \subseteq F$
|
||||
and $\diam(F_i) < \epsilon$
|
||||
|
|
|
@ -62,7 +62,7 @@
|
|||
We extend $f$ to $g\colon\cN \to X$
|
||||
in the following way:
|
||||
|
||||
Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x=s\defon{n}\}$.
|
||||
Take $S \coloneqq \{s \in \N^{<\N}: \exists x \in D, n \in \N.~x\defon{n} = s\}$.
|
||||
Clearly $S$ is a pruned tree.
|
||||
Moreover, since $D$ is closed, we have that (cf.~\yaref{s3e1})
|
||||
\[
|
||||
|
|
|
@ -4,6 +4,7 @@
|
|||
If $C$ is coanalytic,
|
||||
then there exists a $\Pi^1_1$-rank on $C$.
|
||||
\end{theorem}
|
||||
% TODO show that WO sse 2^QQ is Pi_1^1 complete
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Pick a $\Pi^1_1$-complete set.
|
||||
|
@ -25,7 +26,7 @@
|
|||
% \arrow["\subseteq"', hook, from=2-3, to=1-3]
|
||||
% \end{tikzcd}
|
||||
Let $X = 2^{\Q} \supseteq \WO$.
|
||||
We have already show that $\WO$ is $\Pi^1_1$-complete.
|
||||
We have already shown that $\WO$ is $\Pi^1_1$-complete.% TODO REF
|
||||
|
||||
Set $\phi(x) \coloneqq \otp(x)$
|
||||
($\otp\colon \WO \to \Ord$ denotes the order type).
|
||||
|
|
|
@ -170,7 +170,7 @@ Recall:
|
|||
Let $(T,X)$ and $(T,Y)$ be flows.
|
||||
A \vocab{factor map} $\pi\colon (T,X) \to (T,Y)$
|
||||
is a continuous surjection $X \twoheadrightarrow Y$
|
||||
commuting with the group action,
|
||||
that is $T$-equivariant,
|
||||
i.e.~$\forall t \in T, x \in X.~\pi(t\cdot x) = t\cdot \pi(x)$.
|
||||
If such a factor map exists,
|
||||
we also say that $(T,Y)$ is a \vocab{factor}
|
||||
|
@ -257,7 +257,9 @@ Recall:
|
|||
Let $\Sigma = \{(X_i, T) : i \in I\} $
|
||||
be a collection of factors of $(X,T)$. % TODO State precise definition of a factor
|
||||
Let $\pi_i\colon (X,T) \to (X_i, T)$ denote the factor map.
|
||||
Then $(X, T)$ is the \vocab{limit} of $\Sigma$
|
||||
Then $(X, T)$ is a \vocab{limit}%
|
||||
\footnote{This does not seem to be a limit in the category theory sense.}
|
||||
of $\Sigma$
|
||||
iff
|
||||
\[
|
||||
\forall x_1,x_2 \in X.~\exists i \in I.~\pi_i(x_1) \neq \pi_i(x_2).
|
||||
|
|
|
@ -65,9 +65,9 @@ equicontinuity coincide.
|
|||
\end{tikzcd}\]
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
% TODO Think about this
|
||||
We want to apply Zorn's lemma.
|
||||
If suffices to show that isometric flows are closed under inverse limits,
|
||||
If suffices to show that isometric flows are closed under inverse limits,%
|
||||
\footnote{This seems to be an inverse limit in the category theory sense.}
|
||||
i.e.~if $(Y_\alpha, f_{\alpha,\beta})$,
|
||||
$\beta < \alpha \le \Theta$
|
||||
are isometric, then the inverse limit $Y$ is isometric.%
|
||||
|
|
|
@ -34,6 +34,9 @@
|
|||
\end{enumerate}
|
||||
|
||||
\nr 2
|
||||
|
||||
Recall \yaref{thm:clopenize}:
|
||||
|
||||
\begin{fact}
|
||||
Let $(X,\tau)$ be a Polish space and
|
||||
$A \in \cB(X)$.
|
||||
|
@ -41,10 +44,10 @@
|
|||
with the same Borel sets as $\tau$
|
||||
such that $A$ is clopen.
|
||||
|
||||
\end{fact}
|
||||
(Do it for $A$ closed,
|
||||
then show that the sets which work
|
||||
form a $\sigma$-algebra).
|
||||
\end{fact}
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item Let $(X, \tau)$ be Polish.
|
||||
|
|
|
@ -11,6 +11,26 @@
|
|||
|
||||
\nr 3
|
||||
% somewhat examinable (for 1.0)
|
||||
% TODO
|
||||
|
||||
\begin{enumerate}[(a)]
|
||||
\item $(X,T)$ is distal iff it does not have a proximal pair,
|
||||
i.e.~$a\neq b$, $c$ such that $t_n \in T$,
|
||||
$t_na, t_nb \to c$.
|
||||
|
||||
Equivalently,
|
||||
for all $a,b$ there exists an $\epsilon$,
|
||||
such that for all $t \in T$, $d(ta,tb) > \epsilon$.
|
||||
|
||||
|
||||
\item % TODO (not too hard)
|
||||
% (b)
|
||||
% Let $(X,T)$ be distal with a dense orbit,
|
||||
% then it is distal minimal.
|
||||
% Sheet 8: has dense orbit is Borel
|
||||
% Distal flow decomposes into distal minimal flows.
|
||||
\end{enumerate}
|
||||
|
||||
|
||||
\nr 4
|
||||
|
||||
|
|
87
inputs/tutorial_15.tex
Normal file
87
inputs/tutorial_15.tex
Normal file
|
@ -0,0 +1,87 @@
|
|||
\tutorial{15}{2024-01-31}{Additions}
|
||||
|
||||
\subsection{Additional Tutorial}
|
||||
|
||||
The following is not relevant for the exam,
|
||||
but gives a more general picture.
|
||||
|
||||
Let $ X$ be a topological space.
|
||||
Let $\cF$ be a filter on $ X$.
|
||||
|
||||
$x \in X$ is a limit point of $\cF$ iff the neighbourhood filter $\cN_x$,
|
||||
all sets containing an open neighbourhood of $x$,
|
||||
is contained in $\cF$.
|
||||
|
||||
\begin{fact}
|
||||
$X$ is Hausdorff iff every filter has at most one limit point.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Neighbourhood filters are compatible
|
||||
iff the corresponding points
|
||||
can not be separated by open subsets.
|
||||
\end{proof}
|
||||
|
||||
\begin{fact}
|
||||
$X$ is (quasi-) compact
|
||||
iff every ultrafilter converges.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Suppose that $X$ is compact.
|
||||
Let $\cU$ be an ultrafilter.
|
||||
Consider the family $\cV = \{\overline{A} : A \in \cU\}$
|
||||
of closed sets.
|
||||
By the FIP we geht that there exist
|
||||
$c \in X$ such that $c \in \overline{A}$ for all $A \in \cU$.
|
||||
Let $N$ be an open neighbourhood of $c$.
|
||||
If $N^c \in \cU$, then $c \in N^c \lightning$
|
||||
So we get that $N \in \cU$.
|
||||
|
||||
Let $\{V_i : i \in I\} $ be a family of closed sets with the FIP.
|
||||
Consider the filter generated by this family.
|
||||
We extend this to an ultrafilter.
|
||||
The limit of this ultrafilter is contained in all the $V_i$.
|
||||
\end{proof}
|
||||
|
||||
Let $X,Y$ be topological spaces,
|
||||
$\cB$ a filter base on $X$,
|
||||
$\cF$ the filter generated by $\cB$
|
||||
and
|
||||
$f\colon X \to Y$.
|
||||
Then $f(\cB)$ is a filter base on $Y$,
|
||||
since $f(\bigcap A_i ) \subseteq \bigcap f(A_i)$.
|
||||
We say that $\lim_\cF f = y$,
|
||||
if $f(\cF) \to y$.
|
||||
|
||||
Equivalently $f^{-1}(N) \in \cF$
|
||||
for all neighbourhoods $N$ of $y$.
|
||||
|
||||
In the lecture we only considered $X = \N$.
|
||||
If $\cB$ is the base of an ultrafilter,
|
||||
so is $f(\cB)$.
|
||||
|
||||
\begin{fact}
|
||||
Let $X$ be a topological space
|
||||
and let $Y$ be Hausdorff.
|
||||
Let $f,g \colon X \to Y$
|
||||
be continuous.
|
||||
Let $A \subseteq X$ be dense such that
|
||||
$f\defon{A} = g\defon{A} $.
|
||||
Then $f = g$.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
Consider $(f,g)^{-1}(\Delta) \supseteq A$.
|
||||
\end{proof}
|
||||
|
||||
We can uniquely extend $f\colon X \to Y$ continuous
|
||||
to a continuous $\overline{f}\colon \beta X \to Y$
|
||||
by setting $\overline{f}(\cU) \coloneqq \lim_\cU f$.
|
||||
|
||||
Let $V$ be an open neighbourhood of $Y$ in $\overline{f}\left( U) \right) $.
|
||||
Consider $f^{-1}(V)$.
|
||||
Consider the basic open set
|
||||
\[
|
||||
\{\cF \in \beta\N : \cF \ni f^{-1}(V)\}.
|
||||
\]
|
||||
|
||||
|
||||
|
|
@ -74,6 +74,7 @@
|
|||
\input{inputs/tutorial_12b}
|
||||
\input{inputs/tutorial_12}
|
||||
\input{inputs/tutorial_14}
|
||||
\input{inputs/tutorial_15}
|
||||
|
||||
\section{Facts}
|
||||
\input{inputs/facts}
|
||||
|
|
Loading…
Reference in a new issue