This commit is contained in:
parent
415d12cf6a
commit
5beffa0067
4 changed files with 158 additions and 145 deletions
|
@ -12,7 +12,7 @@ jobs:
|
||||||
- name: Prepare pages
|
- name: Prepare pages
|
||||||
run: |
|
run: |
|
||||||
mkdir public
|
mkdir public
|
||||||
mv build/logic3.pdf build/logic3.log README.md public
|
mv build/*.pdf build/*.log README.md public
|
||||||
- name: Deploy to pages
|
- name: Deploy to pages
|
||||||
uses: actions/pages@v1
|
uses: actions/pages@v1
|
||||||
with:
|
with:
|
||||||
|
|
|
@ -198,18 +198,19 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
||||||
such that $f: X \to f(X)$ is a homeomorphism.
|
such that $f: X \to f(X)$ is a homeomorphism.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
$X$ is separable, so it has some countable dense subset,
|
\gist{$X$ is separable, so it has some countable dense subset,
|
||||||
which we order as a sequence $(x_n)_{n \in \omega}$.
|
which we order as a sequence $(x_n)_{n \in \omega}$.}%
|
||||||
|
{Let $(x_n)_{n \in \omega}$ be a countable dense subset.}
|
||||||
|
|
||||||
Let $d$ be a metric on $X$ which is compatible with the topology.
|
\gist{Let $d$ be a metric on $X$ which is compatible with the topology.
|
||||||
W.l.o.g.~$d \le 1$ (by \yaref{prop:boundedmetric}).
|
W.l.o.g.~$d \le 1$ (by \yaref{prop:boundedmetric}).}%
|
||||||
|
{Let $d \le 1$ be a metric of $X$.}
|
||||||
Let $d$ be the metric of $X$ and define
|
Define
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
f\colon X &\longrightarrow & [0,1]^{\omega} \\
|
f\colon X &\longrightarrow & [0,1]^{\omega} \\
|
||||||
x&\longmapsto & (d(x,x_n))_{n < \omega}
|
x&\longmapsto & (d(x,x_n))_{n < \omega}
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
|
\gist{
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
$f$ is injective.
|
$f$ is injective.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
|
@ -237,17 +238,21 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
||||||
Then $f(U) = f(X) \cap [0,1]^{n} \times [0,\epsilon) \times [0,1]^{\omega}$
|
Then $f(U) = f(X) \cap [0,1]^{n} \times [0,\epsilon) \times [0,1]^{\omega}$
|
||||||
is open\footnote{as a subset of $f(X)$!}.
|
is open\footnote{as a subset of $f(X)$!}.
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
|
}{}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
Countable disjoint unions of Polish spaces are Polish.
|
Countable disjoint unions of Polish spaces are Polish.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
|
\gist{
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Define a metric in the obvious way.
|
Define a metric in the obvious way.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
}{}
|
||||||
|
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
Closed subspaces of Polish spaces are Polish.
|
Closed subspaces of Polish spaces are Polish.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
|
\gist{}{
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $X$ be Polish and $V \subseteq X$ closed.
|
Let $X$ be Polish and $V \subseteq X$ closed.
|
||||||
Let $d$ be a complete metric on $X$.
|
Let $d$ be a complete metric on $X$.
|
||||||
|
@ -255,15 +260,14 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
||||||
Subspaces of second countable spaces
|
Subspaces of second countable spaces
|
||||||
are second countable.
|
are second countable.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $X$ be a topological space.
|
Let $X$ be a topological space.
|
||||||
A subspace $A \subseteq X$ is called
|
A subspace $A \subseteq X$ is called
|
||||||
$G_\delta$\footnote{Gebietdurchschnitt}, if it is a countable intersection of open sets.
|
$G_\delta$\footnote{Gebietdurchschnitt}, if it is a countable intersection of open sets.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
\gist{
|
||||||
Next time: Closed sets are $G_\delta$.
|
Next time: Closed sets are $G_\delta$.
|
||||||
A subspace of a Polish space is Polish iff it is $G_{\delta}$
|
A subspace of a Polish space is Polish iff it is $G_{\delta}$
|
||||||
|
}{}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,148 +1,158 @@
|
||||||
\lecture{02}{2023-10-13}{Subsets of Polish spaces}
|
\lecture{02}{2023-10-13}{Subsets of Polish spaces}
|
||||||
|
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
\label{subspacegdelta}
|
\label{subspacegdelta}
|
||||||
A subspace of a Polish space is Polish
|
A subspace of a Polish space is Polish
|
||||||
iff it is $G_{\delta}$.
|
iff it is $G_{\delta}$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
Closed subsets of a metric space $(X, d )$
|
Closed subsets of a metric space $(X, d )$
|
||||||
are $G_{\delta}$.
|
are $G_{\delta}$.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $C \subseteq X$ be closed.
|
\gist{
|
||||||
Let $U_{\frac{1}{n}} \coloneqq \{x | d(x, C) < \frac{1}{n}\}$.
|
Let $C \subseteq X$ be closed.
|
||||||
Clearly $C \subseteq \bigcap U_{\frac{1}{n}}$.
|
Let $U_{\frac{1}{n}} \coloneqq \{x | d(x, C) < \frac{1}{n}\}$.
|
||||||
Let $x \in \bigcap U_{\frac{1}{n}}$.
|
Clearly $C \subseteq \bigcap U_{\frac{1}{n}}$.
|
||||||
Then $\forall n .~ \exists x_n\in C.~d(x,x_n) < \frac{1}{n}$.
|
Let $x \in \bigcap U_{\frac{1}{n}}$.
|
||||||
The $x_n$ converge to $x$ and since $C$ is closed,
|
Then $\forall n .~ \exists x_n\in C.~d(x,x_n) < \frac{1}{n}$.
|
||||||
we get $x \in C$.
|
The $x_n$ converge to $x$ and since $C$ is closed,
|
||||||
Hence $C = \bigcap U_{\frac{1}{n}}$
|
we get $x \in C$.
|
||||||
is $G_{\delta}$.
|
Hence $C = \bigcap U_{\frac{1}{n}}$
|
||||||
\end{proof}
|
is $G_{\delta}$.
|
||||||
|
}{%
|
||||||
|
For $C \overset{\text{closed}}{\subseteq} X$,
|
||||||
|
we have $C = \bigcap_{n \in \N} \{x | d(x,C) < \frac{1}{n}\}$.
|
||||||
|
}
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\begin{example}
|
\gist{
|
||||||
Let $ X$ be Polish.
|
\begin{example}
|
||||||
Let $d$ be a complete metric on $X$.
|
Let $ X$ be Polish.
|
||||||
\begin{enumerate}[a)]
|
Let $d$ be a complete metric on $X$.
|
||||||
\item If $Y \subseteq X$ is closed,
|
\begin{enumerate}[a)]
|
||||||
then $(Y,d\defon{Y})$ is complete.
|
\item If $Y \subseteq X$ is closed,
|
||||||
\item $Y = (0,1) \subseteq \R$
|
then $(Y,d\defon{Y})$ is complete.
|
||||||
with the usual metric $d(x,y) = |x-y|$.
|
\item $Y = (0,1) \subseteq \R$
|
||||||
Then $x_n \to 0$ is Cauchy in $((0,1), d)$.
|
with the usual metric $d(x,y) = |x-y|$.
|
||||||
|
Then $x_n \to 0$ is Cauchy in $((0,1), d)$.
|
||||||
|
|
||||||
But
|
But
|
||||||
\[
|
\[
|
||||||
d_1(x,y) \coloneqq | x -y|
|
d_1(x,y) \coloneqq | x -y|
|
||||||
+ \left|\frac{1}{\min(x, 1- x)}
|
+ \left|\frac{1}{\min(x, 1- x)}
|
||||||
- \frac{1}{\min(y, 1-y)}
|
- \frac{1}{\min(y, 1-y)}
|
||||||
\right|
|
\right|
|
||||||
\]
|
\]
|
||||||
also is a complete metric on $(0,1)$
|
also is a complete metric on $(0,1)$
|
||||||
which is compatible with $d$.
|
which is compatible with $d$.
|
||||||
|
|
||||||
We want to generalize this idea.
|
We want to generalize this idea.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{example}
|
\end{example}
|
||||||
|
}{}
|
||||||
|
|
||||||
\begin{refproof}{subspacegdelta}
|
\begin{refproof}{subspacegdelta}
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
\label{psubspacegdelta:c1}
|
\label{psubspacegdelta:c1}
|
||||||
If $Y \subseteq (X,d)$ is $G_{\delta}$,
|
If $Y \subseteq (X,d)$ is $G_{\delta}$,
|
||||||
then there exists a complete metric on $Y$.
|
then there exists a complete metric on $Y$.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{refproof}{psubspacegdelta:c1}
|
\begin{refproof}{psubspacegdelta:c1}
|
||||||
Let $Y = U$ be open in $X$.
|
Let $Y = U$ be open in $X$.
|
||||||
Consider the map
|
Consider the map
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
f_U\colon U &\longrightarrow &
|
f_U\colon U &\longrightarrow &
|
||||||
\underbrace{X}_{d} \times \underbrace{\R}_{|\cdot |} \\
|
\underbrace{X}_{d} \times \underbrace{\R}_{|\cdot |} \\
|
||||||
x &\longmapsto & \left( x, \frac{1}{d(x, U^c)} \right).
|
x &\longmapsto & \left( x, \frac{1}{d(x, U^c)} \right).
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
Note that $X \times \R$ with the
|
Note that $X \times \R$ with the
|
||||||
\[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\]
|
\[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\]
|
||||||
metric is complete.
|
metric is complete.
|
||||||
|
|
||||||
$f_U$ is an embedding of $U$ into $X \times \R$:
|
$f_U$ is an embedding of $U$ into $X \times \R$\gist{:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item It is injective because of the first coordinate.
|
\item It is injective because of the first coordinate.
|
||||||
\item It is continuous since $d(x, U^c)$ is continuous
|
\item It is continuous since $d(x, U^c)$ is continuous
|
||||||
and only takes strictly positive values. % TODO
|
and only takes strictly positive values. % TODO
|
||||||
\item The inverse is continuous because projections
|
\item The inverse is continuous because projections
|
||||||
are continuous.
|
are continuous.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
}{.}
|
||||||
|
|
||||||
So we have shown that $U$ is homeomorphic to % TODO with ?
|
So we have shown that $U$ and
|
||||||
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$.
|
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$
|
||||||
The graph is closed in $U \times \R$,
|
are homeomorphic.
|
||||||
because $\tilde{f_U}$ is continuous.
|
The graph is closed \gist{in $U \times \R$,
|
||||||
It is closed in $X \times \R$ because
|
because $\tilde{f_U}$ is continuous.
|
||||||
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$.
|
It is closed}{} in $X \times \R$ \gist{because
|
||||||
\todo{Make this precise}
|
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$}{}.
|
||||||
|
\todo{Make this precise}
|
||||||
|
|
||||||
Therefore we identified $U$ with a closed subspace of
|
Therefore we identified $U$ with a closed subspace of
|
||||||
the Polish space $(X \times \R, d_1)$.
|
the Polish space $(X \times \R, d_1)$.
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
||||||
Let $Y = \bigcap_{n \in \N} U_n$ be $G_{\delta}$.
|
Let $Y = \bigcap_{n \in \N} U_n$ be $G_{\delta}$.
|
||||||
Take
|
Take
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
f_Y\colon Y &\longrightarrow & X \times \R^{\N} \\
|
f_Y\colon Y &\longrightarrow & X \times \R^{\N} \\
|
||||||
x &\longmapsto &
|
x &\longmapsto &
|
||||||
\left(x, \left( \frac{1}{\delta(x,U_n^c)} \right)_{n \in \N}\right)
|
\left(x, \left( \frac{1}{\delta(x,U_n^c)} \right)_{n \in \N}\right)
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
|
|
||||||
As for an open $U$, $f_Y$ is an embedding.
|
As for an open $U$, $f_Y$ is an embedding.
|
||||||
Since $X \times \R^{\N}$
|
Since $X \times \R^{\N}$
|
||||||
is completely metrizable,
|
is completely metrizable,
|
||||||
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$.
|
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$.
|
||||||
|
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
\label{psubspacegdelta:c2}
|
\label{psubspacegdelta:c2}
|
||||||
If $Y \subseteq (X,d)$ is completely metrizable,
|
If $Y \subseteq (X,d)$ is completely metrizable,
|
||||||
then $Y$ is a $G_{\delta}$ subspace.
|
then $Y$ is a $G_{\delta}$ subspace.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
\begin{refproof}{psubspacegdelta:c2}
|
\begin{refproof}{psubspacegdelta:c2}
|
||||||
There exists a complete metric $d_Y$ on $Y$.
|
There exists a complete metric $d_Y$ on $Y$.
|
||||||
For every $n$,
|
For every $n$,
|
||||||
let $V_n \subseteq X$ be the union
|
let $V_n \subseteq X$ be the union
|
||||||
of all open sets $U \subseteq X$ such that
|
of all open sets $U \subseteq X$ such that
|
||||||
\begin{enumerate}[(i)]
|
\begin{enumerate}[(i)]
|
||||||
\item $U \cap Y \neq \emptyset$,
|
\item $U \cap Y \neq \emptyset$,
|
||||||
\item $\diam_d(U) \le \frac{1}{n}$,
|
\item $\diam_d(U) \le \frac{1}{n}$,
|
||||||
\item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$.
|
\item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
\gist{
|
||||||
|
We want to show that $Y = \bigcap_{n \in \N} V_n$.
|
||||||
|
For $x \in Y$, $n \in \N$ we have $x \in V_n$,
|
||||||
|
as we can choose two neighbourhoods
|
||||||
|
$U_1$ (open in $Y)$ and $U_2$ (open in $X$ ) of $x$,
|
||||||
|
such that $\diam_{d_Y}(U) < \frac{1}{n}$
|
||||||
|
and $U_2 \cap Y = U_1$.
|
||||||
|
Additionally choose $x \in U_3$ open in $X$
|
||||||
|
with $\diam_{d}(U_3) < \frac{1}{n}$.
|
||||||
|
Then consider $U_2 \cap U_3 \subseteq V_n$.
|
||||||
|
Hence $Y \subseteq \bigcap_{n \in \N} V_n$.
|
||||||
|
|
||||||
We want to show that $Y = \bigcap_{n \in \N} V_n$.
|
Now let $x \in \bigcap_{n \in \N} V_n$.
|
||||||
For $x \in Y$, $n \in \N$ we have $x \in V_n$,
|
For each $n$ pick $x \in U_n \subseteq X$ open
|
||||||
as we can choose two neighbourhoods
|
satisfying (i), (ii), (iii).
|
||||||
$U_1$ (open in $Y)$ and $U_2$ (open in $X$ ) of $x$,
|
From (i) and (ii) it follows that $x \in \overline{Y}$,
|
||||||
such that $\diam_{d_Y}(U) < \frac{1}{n}$
|
since we can consider a sequence of points $y_n \in U_n \cap Y$
|
||||||
and $U_2 \cap Y = U_1$.
|
and get $y_n \xrightarrow{d} x$.
|
||||||
Additionally choose $x \in U_3$ open in $X$
|
For all $n$ we have that $U_n' \coloneqq U_1 \cap \ldots \cap U_n$
|
||||||
with $\diam_{d}(U_3) < \frac{1}{n}$.
|
is an open set containing $x$,
|
||||||
Then consider $U_2 \cap U_3 \subseteq V_n$.
|
hence $U_n' \cap Y \neq \emptyset$.
|
||||||
Hence $Y \subseteq \bigcap_{n \in \N} V_n$.
|
Thus we may assume that the $U_i$ form a decreasing sequence.
|
||||||
|
We have that $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$.
|
||||||
Now let $x \in \bigcap_{n \in \N} V_n$.
|
If follows that the $y_n$ form a Cauchy sequence with respect to $d_Y$,
|
||||||
For each $n$ pick $x \in U_n \subseteq X$ open
|
since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$
|
||||||
satisfying (i), (ii), (iii).
|
and thus $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$.
|
||||||
From (i) and (ii) it follows that $x \in \overline{Y}$,
|
The sequence $y_n$ converges to the unique point in
|
||||||
since we can consider a sequence of points $y_n \in U_n \cap Y$
|
$\bigcap_{n} \overline{U_n \cap Y}$.
|
||||||
and get $y_n \xrightarrow{d} x$.
|
Since the topologies agree, this point is $x$.
|
||||||
For all $n$ we have that $U_n' \coloneqq U_1 \cap \ldots \cap U_n$
|
}{Then $Y = \bigcap_n U_n$.}
|
||||||
is an open set containing $x$,
|
\end{refproof}
|
||||||
hence $U_n' \cap Y \neq \emptyset$.
|
\end{refproof}
|
||||||
Thus we may assume that the $U_i$ form a decreasing sequence.
|
|
||||||
We have that $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$.
|
|
||||||
If follows that the $y_n$ form a Cauchy sequence with respect to $d_Y$,
|
|
||||||
since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$
|
|
||||||
and thus $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$.
|
|
||||||
The sequence $y_n$ converges to the unique point in
|
|
||||||
$\bigcap_{n} \overline{U_n \cap Y}$.
|
|
||||||
Since the topologies agree, this point is $x$.
|
|
||||||
\end{refproof}
|
|
||||||
\end{refproof}
|
|
||||||
|
|
||||||
|
|
|
@ -163,7 +163,6 @@ For this we define
|
||||||
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
||||||
Since the flow is distal, it suffices to show
|
Since the flow is distal, it suffices to show
|
||||||
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
||||||
% TODO REF Distal flow can be decomposed into disjoint minimal flows
|
|
||||||
|
|
||||||
\item Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
\item Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||||
Consider the flows we get from $(f_i)_{i < j}$
|
Consider the flows we get from $(f_i)_{i < j}$
|
||||||
|
|
Loading…
Reference in a new issue