This commit is contained in:
parent
415d12cf6a
commit
5beffa0067
4 changed files with 158 additions and 145 deletions
|
@ -12,7 +12,7 @@ jobs:
|
||||||
- name: Prepare pages
|
- name: Prepare pages
|
||||||
run: |
|
run: |
|
||||||
mkdir public
|
mkdir public
|
||||||
mv build/logic3.pdf build/logic3.log README.md public
|
mv build/*.pdf build/*.log README.md public
|
||||||
- name: Deploy to pages
|
- name: Deploy to pages
|
||||||
uses: actions/pages@v1
|
uses: actions/pages@v1
|
||||||
with:
|
with:
|
||||||
|
|
|
@ -198,18 +198,19 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
||||||
such that $f: X \to f(X)$ is a homeomorphism.
|
such that $f: X \to f(X)$ is a homeomorphism.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
$X$ is separable, so it has some countable dense subset,
|
\gist{$X$ is separable, so it has some countable dense subset,
|
||||||
which we order as a sequence $(x_n)_{n \in \omega}$.
|
which we order as a sequence $(x_n)_{n \in \omega}$.}%
|
||||||
|
{Let $(x_n)_{n \in \omega}$ be a countable dense subset.}
|
||||||
|
|
||||||
Let $d$ be a metric on $X$ which is compatible with the topology.
|
\gist{Let $d$ be a metric on $X$ which is compatible with the topology.
|
||||||
W.l.o.g.~$d \le 1$ (by \yaref{prop:boundedmetric}).
|
W.l.o.g.~$d \le 1$ (by \yaref{prop:boundedmetric}).}%
|
||||||
|
{Let $d \le 1$ be a metric of $X$.}
|
||||||
Let $d$ be the metric of $X$ and define
|
Define
|
||||||
\begin{IEEEeqnarray*}{rCl}
|
\begin{IEEEeqnarray*}{rCl}
|
||||||
f\colon X &\longrightarrow & [0,1]^{\omega} \\
|
f\colon X &\longrightarrow & [0,1]^{\omega} \\
|
||||||
x&\longmapsto & (d(x,x_n))_{n < \omega}
|
x&\longmapsto & (d(x,x_n))_{n < \omega}
|
||||||
\end{IEEEeqnarray*}
|
\end{IEEEeqnarray*}
|
||||||
|
\gist{
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
$f$ is injective.
|
$f$ is injective.
|
||||||
\end{claim}
|
\end{claim}
|
||||||
|
@ -237,17 +238,21 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
||||||
Then $f(U) = f(X) \cap [0,1]^{n} \times [0,\epsilon) \times [0,1]^{\omega}$
|
Then $f(U) = f(X) \cap [0,1]^{n} \times [0,\epsilon) \times [0,1]^{\omega}$
|
||||||
is open\footnote{as a subset of $f(X)$!}.
|
is open\footnote{as a subset of $f(X)$!}.
|
||||||
\end{subproof}
|
\end{subproof}
|
||||||
|
}{}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
Countable disjoint unions of Polish spaces are Polish.
|
Countable disjoint unions of Polish spaces are Polish.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
|
\gist{
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Define a metric in the obvious way.
|
Define a metric in the obvious way.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
}{}
|
||||||
|
|
||||||
\begin{proposition}
|
\begin{proposition}
|
||||||
Closed subspaces of Polish spaces are Polish.
|
Closed subspaces of Polish spaces are Polish.
|
||||||
\end{proposition}
|
\end{proposition}
|
||||||
|
\gist{}{
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
Let $X$ be Polish and $V \subseteq X$ closed.
|
Let $X$ be Polish and $V \subseteq X$ closed.
|
||||||
Let $d$ be a complete metric on $X$.
|
Let $d$ be a complete metric on $X$.
|
||||||
|
@ -255,15 +260,14 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
||||||
Subspaces of second countable spaces
|
Subspaces of second countable spaces
|
||||||
are second countable.
|
are second countable.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
}
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $X$ be a topological space.
|
Let $X$ be a topological space.
|
||||||
A subspace $A \subseteq X$ is called
|
A subspace $A \subseteq X$ is called
|
||||||
$G_\delta$\footnote{Gebietdurchschnitt}, if it is a countable intersection of open sets.
|
$G_\delta$\footnote{Gebietdurchschnitt}, if it is a countable intersection of open sets.
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
\gist{
|
||||||
Next time: Closed sets are $G_\delta$.
|
Next time: Closed sets are $G_\delta$.
|
||||||
A subspace of a Polish space is Polish iff it is $G_{\delta}$
|
A subspace of a Polish space is Polish iff it is $G_{\delta}$
|
||||||
|
}{}
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -1,16 +1,17 @@
|
||||||
\lecture{02}{2023-10-13}{Subsets of Polish spaces}
|
\lecture{02}{2023-10-13}{Subsets of Polish spaces}
|
||||||
|
|
||||||
\begin{theorem}
|
\begin{theorem}
|
||||||
\label{subspacegdelta}
|
\label{subspacegdelta}
|
||||||
A subspace of a Polish space is Polish
|
A subspace of a Polish space is Polish
|
||||||
iff it is $G_{\delta}$.
|
iff it is $G_{\delta}$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
|
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
Closed subsets of a metric space $(X, d )$
|
Closed subsets of a metric space $(X, d )$
|
||||||
are $G_{\delta}$.
|
are $G_{\delta}$.
|
||||||
\end{remark}
|
\end{remark}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\gist{
|
||||||
Let $C \subseteq X$ be closed.
|
Let $C \subseteq X$ be closed.
|
||||||
Let $U_{\frac{1}{n}} \coloneqq \{x | d(x, C) < \frac{1}{n}\}$.
|
Let $U_{\frac{1}{n}} \coloneqq \{x | d(x, C) < \frac{1}{n}\}$.
|
||||||
Clearly $C \subseteq \bigcap U_{\frac{1}{n}}$.
|
Clearly $C \subseteq \bigcap U_{\frac{1}{n}}$.
|
||||||
|
@ -20,9 +21,14 @@
|
||||||
we get $x \in C$.
|
we get $x \in C$.
|
||||||
Hence $C = \bigcap U_{\frac{1}{n}}$
|
Hence $C = \bigcap U_{\frac{1}{n}}$
|
||||||
is $G_{\delta}$.
|
is $G_{\delta}$.
|
||||||
\end{proof}
|
}{%
|
||||||
|
For $C \overset{\text{closed}}{\subseteq} X$,
|
||||||
|
we have $C = \bigcap_{n \in \N} \{x | d(x,C) < \frac{1}{n}\}$.
|
||||||
|
}
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
\begin{example}
|
\gist{
|
||||||
|
\begin{example}
|
||||||
Let $ X$ be Polish.
|
Let $ X$ be Polish.
|
||||||
Let $d$ be a complete metric on $X$.
|
Let $d$ be a complete metric on $X$.
|
||||||
\begin{enumerate}[a)]
|
\begin{enumerate}[a)]
|
||||||
|
@ -44,9 +50,10 @@
|
||||||
|
|
||||||
We want to generalize this idea.
|
We want to generalize this idea.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{example}
|
\end{example}
|
||||||
|
}{}
|
||||||
|
|
||||||
\begin{refproof}{subspacegdelta}
|
\begin{refproof}{subspacegdelta}
|
||||||
\begin{claim}
|
\begin{claim}
|
||||||
\label{psubspacegdelta:c1}
|
\label{psubspacegdelta:c1}
|
||||||
If $Y \subseteq (X,d)$ is $G_{\delta}$,
|
If $Y \subseteq (X,d)$ is $G_{\delta}$,
|
||||||
|
@ -65,7 +72,7 @@
|
||||||
\[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\]
|
\[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\]
|
||||||
metric is complete.
|
metric is complete.
|
||||||
|
|
||||||
$f_U$ is an embedding of $U$ into $X \times \R$:
|
$f_U$ is an embedding of $U$ into $X \times \R$\gist{:
|
||||||
\begin{itemize}
|
\begin{itemize}
|
||||||
\item It is injective because of the first coordinate.
|
\item It is injective because of the first coordinate.
|
||||||
\item It is continuous since $d(x, U^c)$ is continuous
|
\item It is continuous since $d(x, U^c)$ is continuous
|
||||||
|
@ -73,13 +80,15 @@
|
||||||
\item The inverse is continuous because projections
|
\item The inverse is continuous because projections
|
||||||
are continuous.
|
are continuous.
|
||||||
\end{itemize}
|
\end{itemize}
|
||||||
|
}{.}
|
||||||
|
|
||||||
So we have shown that $U$ is homeomorphic to % TODO with ?
|
So we have shown that $U$ and
|
||||||
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$.
|
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$
|
||||||
The graph is closed in $U \times \R$,
|
are homeomorphic.
|
||||||
|
The graph is closed \gist{in $U \times \R$,
|
||||||
because $\tilde{f_U}$ is continuous.
|
because $\tilde{f_U}$ is continuous.
|
||||||
It is closed in $X \times \R$ because
|
It is closed}{} in $X \times \R$ \gist{because
|
||||||
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$.
|
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$}{}.
|
||||||
\todo{Make this precise}
|
\todo{Make this precise}
|
||||||
|
|
||||||
Therefore we identified $U$ with a closed subspace of
|
Therefore we identified $U$ with a closed subspace of
|
||||||
|
@ -114,7 +123,7 @@
|
||||||
\item $\diam_d(U) \le \frac{1}{n}$,
|
\item $\diam_d(U) \le \frac{1}{n}$,
|
||||||
\item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$.
|
\item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
|
\gist{
|
||||||
We want to show that $Y = \bigcap_{n \in \N} V_n$.
|
We want to show that $Y = \bigcap_{n \in \N} V_n$.
|
||||||
For $x \in Y$, $n \in \N$ we have $x \in V_n$,
|
For $x \in Y$, $n \in \N$ we have $x \in V_n$,
|
||||||
as we can choose two neighbourhoods
|
as we can choose two neighbourhoods
|
||||||
|
@ -143,6 +152,7 @@
|
||||||
The sequence $y_n$ converges to the unique point in
|
The sequence $y_n$ converges to the unique point in
|
||||||
$\bigcap_{n} \overline{U_n \cap Y}$.
|
$\bigcap_{n} \overline{U_n \cap Y}$.
|
||||||
Since the topologies agree, this point is $x$.
|
Since the topologies agree, this point is $x$.
|
||||||
|
}{Then $Y = \bigcap_n U_n$.}
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
\end{refproof}
|
\end{refproof}
|
||||||
|
|
||||||
|
|
|
@ -163,7 +163,6 @@ For this we define
|
||||||
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
||||||
Since the flow is distal, it suffices to show
|
Since the flow is distal, it suffices to show
|
||||||
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
||||||
% TODO REF Distal flow can be decomposed into disjoint minimal flows
|
|
||||||
|
|
||||||
\item Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
\item Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||||
Consider the flows we get from $(f_i)_{i < j}$
|
Consider the flows we get from $(f_i)_{i < j}$
|
||||||
|
|
Loading…
Reference in a new issue