This commit is contained in:
parent
415d12cf6a
commit
5beffa0067
4 changed files with 158 additions and 145 deletions
|
@ -12,7 +12,7 @@ jobs:
|
|||
- name: Prepare pages
|
||||
run: |
|
||||
mkdir public
|
||||
mv build/logic3.pdf build/logic3.log README.md public
|
||||
mv build/*.pdf build/*.log README.md public
|
||||
- name: Deploy to pages
|
||||
uses: actions/pages@v1
|
||||
with:
|
||||
|
|
|
@ -198,18 +198,19 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
|||
such that $f: X \to f(X)$ is a homeomorphism.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
$X$ is separable, so it has some countable dense subset,
|
||||
which we order as a sequence $(x_n)_{n \in \omega}$.
|
||||
\gist{$X$ is separable, so it has some countable dense subset,
|
||||
which we order as a sequence $(x_n)_{n \in \omega}$.}%
|
||||
{Let $(x_n)_{n \in \omega}$ be a countable dense subset.}
|
||||
|
||||
Let $d$ be a metric on $X$ which is compatible with the topology.
|
||||
W.l.o.g.~$d \le 1$ (by \yaref{prop:boundedmetric}).
|
||||
|
||||
Let $d$ be the metric of $X$ and define
|
||||
\gist{Let $d$ be a metric on $X$ which is compatible with the topology.
|
||||
W.l.o.g.~$d \le 1$ (by \yaref{prop:boundedmetric}).}%
|
||||
{Let $d \le 1$ be a metric of $X$.}
|
||||
Define
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f\colon X &\longrightarrow & [0,1]^{\omega} \\
|
||||
x&\longmapsto & (d(x,x_n))_{n < \omega}
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
\gist{
|
||||
\begin{claim}
|
||||
$f$ is injective.
|
||||
\end{claim}
|
||||
|
@ -237,17 +238,21 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
|||
Then $f(U) = f(X) \cap [0,1]^{n} \times [0,\epsilon) \times [0,1]^{\omega}$
|
||||
is open\footnote{as a subset of $f(X)$!}.
|
||||
\end{subproof}
|
||||
}{}
|
||||
\end{proof}
|
||||
\begin{proposition}
|
||||
Countable disjoint unions of Polish spaces are Polish.
|
||||
\end{proposition}
|
||||
\gist{
|
||||
\begin{proof}
|
||||
Define a metric in the obvious way.
|
||||
\end{proof}
|
||||
}{}
|
||||
|
||||
\begin{proposition}
|
||||
Closed subspaces of Polish spaces are Polish.
|
||||
\end{proposition}
|
||||
\gist{}{
|
||||
\begin{proof}
|
||||
Let $X$ be Polish and $V \subseteq X$ closed.
|
||||
Let $d$ be a complete metric on $X$.
|
||||
|
@ -255,15 +260,14 @@ suffices to show that open balls in one metric are unions of open balls in the o
|
|||
Subspaces of second countable spaces
|
||||
are second countable.
|
||||
\end{proof}
|
||||
}
|
||||
|
||||
\begin{definition}
|
||||
Let $X$ be a topological space.
|
||||
A subspace $A \subseteq X$ is called
|
||||
$G_\delta$\footnote{Gebietdurchschnitt}, if it is a countable intersection of open sets.
|
||||
\end{definition}
|
||||
|
||||
\gist{
|
||||
Next time: Closed sets are $G_\delta$.
|
||||
A subspace of a Polish space is Polish iff it is $G_{\delta}$
|
||||
|
||||
|
||||
|
||||
}{}
|
||||
|
|
|
@ -1,148 +1,158 @@
|
|||
\lecture{02}{2023-10-13}{Subsets of Polish spaces}
|
||||
|
||||
\begin{theorem}
|
||||
\label{subspacegdelta}
|
||||
A subspace of a Polish space is Polish
|
||||
iff it is $G_{\delta}$.
|
||||
\end{theorem}
|
||||
\begin{theorem}
|
||||
\label{subspacegdelta}
|
||||
A subspace of a Polish space is Polish
|
||||
iff it is $G_{\delta}$.
|
||||
\end{theorem}
|
||||
|
||||
\begin{remark}
|
||||
Closed subsets of a metric space $(X, d )$
|
||||
are $G_{\delta}$.
|
||||
\end{remark}
|
||||
\begin{proof}
|
||||
Let $C \subseteq X$ be closed.
|
||||
Let $U_{\frac{1}{n}} \coloneqq \{x | d(x, C) < \frac{1}{n}\}$.
|
||||
Clearly $C \subseteq \bigcap U_{\frac{1}{n}}$.
|
||||
Let $x \in \bigcap U_{\frac{1}{n}}$.
|
||||
Then $\forall n .~ \exists x_n\in C.~d(x,x_n) < \frac{1}{n}$.
|
||||
The $x_n$ converge to $x$ and since $C$ is closed,
|
||||
we get $x \in C$.
|
||||
Hence $C = \bigcap U_{\frac{1}{n}}$
|
||||
is $G_{\delta}$.
|
||||
\end{proof}
|
||||
\begin{remark}
|
||||
Closed subsets of a metric space $(X, d )$
|
||||
are $G_{\delta}$.
|
||||
\end{remark}
|
||||
\begin{proof}
|
||||
\gist{
|
||||
Let $C \subseteq X$ be closed.
|
||||
Let $U_{\frac{1}{n}} \coloneqq \{x | d(x, C) < \frac{1}{n}\}$.
|
||||
Clearly $C \subseteq \bigcap U_{\frac{1}{n}}$.
|
||||
Let $x \in \bigcap U_{\frac{1}{n}}$.
|
||||
Then $\forall n .~ \exists x_n\in C.~d(x,x_n) < \frac{1}{n}$.
|
||||
The $x_n$ converge to $x$ and since $C$ is closed,
|
||||
we get $x \in C$.
|
||||
Hence $C = \bigcap U_{\frac{1}{n}}$
|
||||
is $G_{\delta}$.
|
||||
}{%
|
||||
For $C \overset{\text{closed}}{\subseteq} X$,
|
||||
we have $C = \bigcap_{n \in \N} \{x | d(x,C) < \frac{1}{n}\}$.
|
||||
}
|
||||
\end{proof}
|
||||
|
||||
\begin{example}
|
||||
Let $ X$ be Polish.
|
||||
Let $d$ be a complete metric on $X$.
|
||||
\begin{enumerate}[a)]
|
||||
\item If $Y \subseteq X$ is closed,
|
||||
then $(Y,d\defon{Y})$ is complete.
|
||||
\item $Y = (0,1) \subseteq \R$
|
||||
with the usual metric $d(x,y) = |x-y|$.
|
||||
Then $x_n \to 0$ is Cauchy in $((0,1), d)$.
|
||||
\gist{
|
||||
\begin{example}
|
||||
Let $ X$ be Polish.
|
||||
Let $d$ be a complete metric on $X$.
|
||||
\begin{enumerate}[a)]
|
||||
\item If $Y \subseteq X$ is closed,
|
||||
then $(Y,d\defon{Y})$ is complete.
|
||||
\item $Y = (0,1) \subseteq \R$
|
||||
with the usual metric $d(x,y) = |x-y|$.
|
||||
Then $x_n \to 0$ is Cauchy in $((0,1), d)$.
|
||||
|
||||
But
|
||||
\[
|
||||
d_1(x,y) \coloneqq | x -y|
|
||||
+ \left|\frac{1}{\min(x, 1- x)}
|
||||
- \frac{1}{\min(y, 1-y)}
|
||||
\right|
|
||||
\]
|
||||
also is a complete metric on $(0,1)$
|
||||
which is compatible with $d$.
|
||||
But
|
||||
\[
|
||||
d_1(x,y) \coloneqq | x -y|
|
||||
+ \left|\frac{1}{\min(x, 1- x)}
|
||||
- \frac{1}{\min(y, 1-y)}
|
||||
\right|
|
||||
\]
|
||||
also is a complete metric on $(0,1)$
|
||||
which is compatible with $d$.
|
||||
|
||||
We want to generalize this idea.
|
||||
\end{enumerate}
|
||||
\end{example}
|
||||
We want to generalize this idea.
|
||||
\end{enumerate}
|
||||
\end{example}
|
||||
}{}
|
||||
|
||||
\begin{refproof}{subspacegdelta}
|
||||
\begin{claim}
|
||||
\label{psubspacegdelta:c1}
|
||||
If $Y \subseteq (X,d)$ is $G_{\delta}$,
|
||||
then there exists a complete metric on $Y$.
|
||||
\end{claim}
|
||||
\begin{refproof}{psubspacegdelta:c1}
|
||||
Let $Y = U$ be open in $X$.
|
||||
Consider the map
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f_U\colon U &\longrightarrow &
|
||||
\underbrace{X}_{d} \times \underbrace{\R}_{|\cdot |} \\
|
||||
x &\longmapsto & \left( x, \frac{1}{d(x, U^c)} \right).
|
||||
\end{IEEEeqnarray*}
|
||||
\begin{refproof}{subspacegdelta}
|
||||
\begin{claim}
|
||||
\label{psubspacegdelta:c1}
|
||||
If $Y \subseteq (X,d)$ is $G_{\delta}$,
|
||||
then there exists a complete metric on $Y$.
|
||||
\end{claim}
|
||||
\begin{refproof}{psubspacegdelta:c1}
|
||||
Let $Y = U$ be open in $X$.
|
||||
Consider the map
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f_U\colon U &\longrightarrow &
|
||||
\underbrace{X}_{d} \times \underbrace{\R}_{|\cdot |} \\
|
||||
x &\longmapsto & \left( x, \frac{1}{d(x, U^c)} \right).
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
Note that $X \times \R$ with the
|
||||
\[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\]
|
||||
metric is complete.
|
||||
Note that $X \times \R$ with the
|
||||
\[d_1((x_1,y_1), (x_2, y_2)) \coloneqq d(x_1,x_2) + |y_1 - y_2|\]
|
||||
metric is complete.
|
||||
|
||||
$f_U$ is an embedding of $U$ into $X \times \R$:
|
||||
\begin{itemize}
|
||||
\item It is injective because of the first coordinate.
|
||||
\item It is continuous since $d(x, U^c)$ is continuous
|
||||
and only takes strictly positive values. % TODO
|
||||
\item The inverse is continuous because projections
|
||||
are continuous.
|
||||
\end{itemize}
|
||||
$f_U$ is an embedding of $U$ into $X \times \R$\gist{:
|
||||
\begin{itemize}
|
||||
\item It is injective because of the first coordinate.
|
||||
\item It is continuous since $d(x, U^c)$ is continuous
|
||||
and only takes strictly positive values. % TODO
|
||||
\item The inverse is continuous because projections
|
||||
are continuous.
|
||||
\end{itemize}
|
||||
}{.}
|
||||
|
||||
So we have shown that $U$ is homeomorphic to % TODO with ?
|
||||
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$.
|
||||
The graph is closed in $U \times \R$,
|
||||
because $\tilde{f_U}$ is continuous.
|
||||
It is closed in $X \times \R$ because
|
||||
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$.
|
||||
\todo{Make this precise}
|
||||
So we have shown that $U$ and
|
||||
the graph of $\tilde{f_U}\colon x \mapsto \frac{1}{d(x, U^c)}$
|
||||
are homeomorphic.
|
||||
The graph is closed \gist{in $U \times \R$,
|
||||
because $\tilde{f_U}$ is continuous.
|
||||
It is closed}{} in $X \times \R$ \gist{because
|
||||
$\tilde{f_U} \to \infty$ for $d(x, U^c) \to 0$}{}.
|
||||
\todo{Make this precise}
|
||||
|
||||
Therefore we identified $U$ with a closed subspace of
|
||||
the Polish space $(X \times \R, d_1)$.
|
||||
\end{refproof}
|
||||
Therefore we identified $U$ with a closed subspace of
|
||||
the Polish space $(X \times \R, d_1)$.
|
||||
\end{refproof}
|
||||
|
||||
Let $Y = \bigcap_{n \in \N} U_n$ be $G_{\delta}$.
|
||||
Take
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f_Y\colon Y &\longrightarrow & X \times \R^{\N} \\
|
||||
x &\longmapsto &
|
||||
\left(x, \left( \frac{1}{\delta(x,U_n^c)} \right)_{n \in \N}\right)
|
||||
\end{IEEEeqnarray*}
|
||||
Let $Y = \bigcap_{n \in \N} U_n$ be $G_{\delta}$.
|
||||
Take
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
f_Y\colon Y &\longrightarrow & X \times \R^{\N} \\
|
||||
x &\longmapsto &
|
||||
\left(x, \left( \frac{1}{\delta(x,U_n^c)} \right)_{n \in \N}\right)
|
||||
\end{IEEEeqnarray*}
|
||||
|
||||
As for an open $U$, $f_Y$ is an embedding.
|
||||
Since $X \times \R^{\N}$
|
||||
is completely metrizable,
|
||||
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$.
|
||||
As for an open $U$, $f_Y$ is an embedding.
|
||||
Since $X \times \R^{\N}$
|
||||
is completely metrizable,
|
||||
so is the closed set $f_Y(Y) \subseteq X \times \R^\N$.
|
||||
|
||||
\begin{claim}
|
||||
\label{psubspacegdelta:c2}
|
||||
If $Y \subseteq (X,d)$ is completely metrizable,
|
||||
then $Y$ is a $G_{\delta}$ subspace.
|
||||
\end{claim}
|
||||
\begin{refproof}{psubspacegdelta:c2}
|
||||
There exists a complete metric $d_Y$ on $Y$.
|
||||
For every $n$,
|
||||
let $V_n \subseteq X$ be the union
|
||||
of all open sets $U \subseteq X$ such that
|
||||
\begin{enumerate}[(i)]
|
||||
\item $U \cap Y \neq \emptyset$,
|
||||
\item $\diam_d(U) \le \frac{1}{n}$,
|
||||
\item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$.
|
||||
\end{enumerate}
|
||||
\begin{claim}
|
||||
\label{psubspacegdelta:c2}
|
||||
If $Y \subseteq (X,d)$ is completely metrizable,
|
||||
then $Y$ is a $G_{\delta}$ subspace.
|
||||
\end{claim}
|
||||
\begin{refproof}{psubspacegdelta:c2}
|
||||
There exists a complete metric $d_Y$ on $Y$.
|
||||
For every $n$,
|
||||
let $V_n \subseteq X$ be the union
|
||||
of all open sets $U \subseteq X$ such that
|
||||
\begin{enumerate}[(i)]
|
||||
\item $U \cap Y \neq \emptyset$,
|
||||
\item $\diam_d(U) \le \frac{1}{n}$,
|
||||
\item $\diam_{d_Y}(U \cap Y) \le \frac{1}{n}$.
|
||||
\end{enumerate}
|
||||
\gist{
|
||||
We want to show that $Y = \bigcap_{n \in \N} V_n$.
|
||||
For $x \in Y$, $n \in \N$ we have $x \in V_n$,
|
||||
as we can choose two neighbourhoods
|
||||
$U_1$ (open in $Y)$ and $U_2$ (open in $X$ ) of $x$,
|
||||
such that $\diam_{d_Y}(U) < \frac{1}{n}$
|
||||
and $U_2 \cap Y = U_1$.
|
||||
Additionally choose $x \in U_3$ open in $X$
|
||||
with $\diam_{d}(U_3) < \frac{1}{n}$.
|
||||
Then consider $U_2 \cap U_3 \subseteq V_n$.
|
||||
Hence $Y \subseteq \bigcap_{n \in \N} V_n$.
|
||||
|
||||
We want to show that $Y = \bigcap_{n \in \N} V_n$.
|
||||
For $x \in Y$, $n \in \N$ we have $x \in V_n$,
|
||||
as we can choose two neighbourhoods
|
||||
$U_1$ (open in $Y)$ and $U_2$ (open in $X$ ) of $x$,
|
||||
such that $\diam_{d_Y}(U) < \frac{1}{n}$
|
||||
and $U_2 \cap Y = U_1$.
|
||||
Additionally choose $x \in U_3$ open in $X$
|
||||
with $\diam_{d}(U_3) < \frac{1}{n}$.
|
||||
Then consider $U_2 \cap U_3 \subseteq V_n$.
|
||||
Hence $Y \subseteq \bigcap_{n \in \N} V_n$.
|
||||
|
||||
Now let $x \in \bigcap_{n \in \N} V_n$.
|
||||
For each $n$ pick $x \in U_n \subseteq X$ open
|
||||
satisfying (i), (ii), (iii).
|
||||
From (i) and (ii) it follows that $x \in \overline{Y}$,
|
||||
since we can consider a sequence of points $y_n \in U_n \cap Y$
|
||||
and get $y_n \xrightarrow{d} x$.
|
||||
For all $n$ we have that $U_n' \coloneqq U_1 \cap \ldots \cap U_n$
|
||||
is an open set containing $x$,
|
||||
hence $U_n' \cap Y \neq \emptyset$.
|
||||
Thus we may assume that the $U_i$ form a decreasing sequence.
|
||||
We have that $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$.
|
||||
If follows that the $y_n$ form a Cauchy sequence with respect to $d_Y$,
|
||||
since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$
|
||||
and thus $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$.
|
||||
The sequence $y_n$ converges to the unique point in
|
||||
$\bigcap_{n} \overline{U_n \cap Y}$.
|
||||
Since the topologies agree, this point is $x$.
|
||||
\end{refproof}
|
||||
\end{refproof}
|
||||
Now let $x \in \bigcap_{n \in \N} V_n$.
|
||||
For each $n$ pick $x \in U_n \subseteq X$ open
|
||||
satisfying (i), (ii), (iii).
|
||||
From (i) and (ii) it follows that $x \in \overline{Y}$,
|
||||
since we can consider a sequence of points $y_n \in U_n \cap Y$
|
||||
and get $y_n \xrightarrow{d} x$.
|
||||
For all $n$ we have that $U_n' \coloneqq U_1 \cap \ldots \cap U_n$
|
||||
is an open set containing $x$,
|
||||
hence $U_n' \cap Y \neq \emptyset$.
|
||||
Thus we may assume that the $U_i$ form a decreasing sequence.
|
||||
We have that $\diam_{d_Y}(U_n \cap Y) \le \frac{1}{n}$.
|
||||
If follows that the $y_n$ form a Cauchy sequence with respect to $d_Y$,
|
||||
since $\diam(U_n \cap Y) \xrightarrow{d_Y} 0$
|
||||
and thus $\diam(\overline{U_n \cap Y}) \xrightarrow{d_Y} 0$.
|
||||
The sequence $y_n$ converges to the unique point in
|
||||
$\bigcap_{n} \overline{U_n \cap Y}$.
|
||||
Since the topologies agree, this point is $x$.
|
||||
}{Then $Y = \bigcap_n U_n$.}
|
||||
\end{refproof}
|
||||
\end{refproof}
|
||||
|
||||
|
|
|
@ -163,7 +163,6 @@ For this we define
|
|||
is dense in $\overline{x} \mapsto f(\overline{x})$.
|
||||
Since the flow is distal, it suffices to show
|
||||
that one orbit is dense (cf.~\yaref{thm:distalflowpartition}).
|
||||
% TODO REF Distal flow can be decomposed into disjoint minimal flows
|
||||
|
||||
\item Let $\overline{f} = (f_i)_{i \in I} \in \mathbb{K}_I$.
|
||||
Consider the flows we get from $(f_i)_{i < j}$
|
||||
|
|
Loading…
Reference in a new issue