countable well-orders
Some checks failed
Build latex and deploy / checkout (push) Failing after 18m44s
Some checks failed
Build latex and deploy / checkout (push) Failing after 18m44s
This commit is contained in:
parent
e3dea569e8
commit
5b34fb34d1
3 changed files with 12 additions and 14 deletions
|
@ -44,4 +44,12 @@ title = {Classical Descriptive Set Theory},
|
||||||
volume = {156},
|
volume = {156},
|
||||||
year = {2012},
|
year = {2012},
|
||||||
}
|
}
|
||||||
|
@MISC{3722713,
|
||||||
|
TITLE = {Embedding of countable linear orders into $\Bbb Q$ as topological spaces},
|
||||||
|
AUTHOR = {Eric Wofsey (https://math.stackexchange.com/users/86856/eric-wofsey)},
|
||||||
|
HOWPUBLISHED = {Mathematics Stack Exchange},
|
||||||
|
NOTE = {URL:https://math.stackexchange.com/q/3722713 (version: 2020-06-16)},
|
||||||
|
EPRINT = {https://math.stackexchange.com/q/3722713},
|
||||||
|
URL = {https://math.stackexchange.com/q/3722713}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
|
@ -18,20 +18,10 @@ by associating a function $f\colon \Q \to \{0,1\}$
|
||||||
with $(f^{-1}(\{1\}), <)$.
|
with $(f^{-1}(\{1\}), <)$.
|
||||||
|
|
||||||
\begin{lemma}
|
\begin{lemma}
|
||||||
Any countable ordinal embeds into $(\Q,<)$.
|
Any countable wellorder embeds into $(\Q,<)$.
|
||||||
\end{lemma}
|
\end{lemma}
|
||||||
\begin{proof}[sketch]
|
\begin{proof}\footnote{In the lecture this was only done for countable \emph{ordinals}.}
|
||||||
Use transfinite induction.
|
Cf.~\cite{3722713}.
|
||||||
Suppose we already have $\alpha \hookrightarrow (\Q, <)$,
|
|
||||||
we need to show that $\alpha +1 \hookrightarrow (\Q, <)$.
|
|
||||||
Since $(0,1) \cap \Q \cong \Q$,
|
|
||||||
we may assume $\alpha \hookrightarrow ((0,1), <)$
|
|
||||||
and can just set $\alpha \mapsto 2$.
|
|
||||||
|
|
||||||
For a limit $\alpha$
|
|
||||||
take a countable cofinal subsequence $\alpha_1 < \alpha_2 < \ldots \to \alpha$.
|
|
||||||
Then map $[0,\alpha_1)$ to $(0,1)$
|
|
||||||
and $[\alpha_i, \alpha_{i+1})$ to $(i,i+1)$.
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
% TODO $\WF \subseteq 2^\Q$ is $\Sigma^1_1$-complete.
|
% TODO $\WF \subseteq 2^\Q$ is $\Sigma^1_1$-complete.
|
||||||
|
|
|
@ -23,7 +23,7 @@ $X$ is always compact metrizable.
|
||||||
\[
|
\[
|
||||||
\{h^n : n \in \Z\} \subseteq \cC(X,X)\gist{ = \{f\colon X \to X : f \text{ continuous}\}}{},
|
\{h^n : n \in \Z\} \subseteq \cC(X,X)\gist{ = \{f\colon X \to X : f \text{ continuous}\}}{},
|
||||||
\]
|
\]
|
||||||
where the topology is the uniform convergence topology. % TODO REF EXERCISE
|
where the topology is the uniform convergence topology.
|
||||||
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
Let $G = \overline{ \{h^n : n \in \Z\} } \subseteq \cC(X,X)$.
|
||||||
Since the family $\{h^n : n \in \Z\}$ is uniformly equicontinuous,
|
Since the family $\{h^n : n \in \Z\}$ is uniformly equicontinuous,
|
||||||
i.e.~
|
i.e.~
|
||||||
|
|
Loading…
Reference in a new issue