This commit is contained in:
parent
6c2a76d838
commit
59d595f9ef
4 changed files with 21 additions and 16 deletions
|
@ -104,7 +104,7 @@
|
|||
\forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast).
|
||||
\]
|
||||
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
|
||||
\footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}}
|
||||
\footnote{Wikimedia has a nice \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{picture}.}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
Let $\phi\colon R \to \Ord$
|
||||
|
|
|
@ -191,8 +191,7 @@ since $X^X$ has these properties.
|
|||
Since $f$ is injective, we get that $x = f(x)$,
|
||||
i.e.~$f = \id$.
|
||||
|
||||
Take $g' \in G$ such that $f = g' \circ g$.%
|
||||
%\footnote{This exists since $f \in Gg$.}
|
||||
Since $f \in Gg$, there exists $g' \in G$ such that $f = g' \circ g$.
|
||||
|
||||
It is $g' = g'gg'$,
|
||||
so $\forall x .~g'(x) = g'(g g'(x))$.
|
||||
|
|
|
@ -1,9 +1,6 @@
|
|||
\subsection{Sketch of proof of \yaref{thm:l16:3}}
|
||||
\lecture{18}{2023-12-15}{Sketch of proof of \yaref{thm:l16:3}}
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
|
||||
The goal for this lecture is to give a very rough
|
||||
sketch of \yaref{thm:l16:3} in the case of $|Z| = 1$.
|
||||
|
||||
|
@ -21,7 +18,9 @@ F(x,x') \coloneqq \inf \{d(gx, gx') : g \in G\}.
|
|||
\item $F(x,x') = F(x', x)$,
|
||||
\item $F(x,x') \ge 0$ and $F(x,x') = 0$ iff $x = x'$.
|
||||
\item $F(gx, gx') = F(x,x')$ since $G$ is a group.
|
||||
\item $F$ is an upper semi-continuous function on $X^2$,
|
||||
\item $F$ is an \vocab{upper semi-continuous}\footnote{%
|
||||
Wikimedia has a nice \href{https://upload.wikimedia.org/wikipedia/commons/c/c0/Upper_semi.svg}{picture}.}
|
||||
function on $X^2$,
|
||||
i.e.~$\forall a \in R.~\{(x,x') \in X^2 : F(x,x') < a\} \overset{\text{open}}{\subseteq} X^2$.
|
||||
|
||||
This holds because $F$ is the infimum of continuous functions
|
||||
|
@ -47,23 +46,28 @@ This will follow from the following lemma:
|
|||
\begin{lemma}
|
||||
\label{lem:ftophelper}
|
||||
Let $F(x,x') < a$.
|
||||
\gist{%
|
||||
Then there exists $\epsilon > 0$ such that
|
||||
whenever $F(x',x'') < \epsilon$, then $F(x,x'') < a$.
|
||||
}{Then $\exists \epsilon > 0.~\forall x''.~F(x',x'') < \epsilon \implies F(x,x'') < a$.}
|
||||
\end{lemma}
|
||||
\begin{refproof}{def:ftop}
|
||||
\gist{%
|
||||
We have to show that if $U_a(x_1) \cap U_b(x_2) \neq \emptyset$,
|
||||
then this intersection is the union
|
||||
of sets of this kind.
|
||||
Let $x' \in U_a(x_1)$.
|
||||
}{}
|
||||
Let $x' \in U_a(x_1) \cap U_b(x_2)$.
|
||||
Then by \yaref{lem:ftophelper},
|
||||
there exists $\epsilon_1 > 0$ with $U_{\epsilon_1}(x') \subseteq U_a(x_1)$.
|
||||
Similarly there exists $\epsilon_2 > 0$
|
||||
such that $U_{\epsilon_2}(x') \subseteq U_b(x_2)$.
|
||||
Similarly there exists $\epsilon_2 > 0$\gist{
|
||||
such that $U_{\epsilon_2}(x') \subseteq U_b(x_2)$.}{.}
|
||||
So for $\epsilon \le \epsilon_1, \epsilon_2$,
|
||||
we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$.
|
||||
\end{refproof}
|
||||
\begin{refproof}{lem:ftophelper}%
|
||||
\notexaminable{\footnote{This was not covered in class.}
|
||||
% TODO: maybe learn?
|
||||
|
||||
Let $T = \bigcup_n T_n$,% TODO Why does this exist?
|
||||
$T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and
|
||||
|
@ -164,8 +168,7 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
|
|||
\item One can show that $H$ is a topological group and $(M,H)$
|
||||
is a flow.\footnote{This is non-trivial.}
|
||||
\item Since $H$ is compact,
|
||||
$(M,H)$ is equicontinuous, %\todo{We didn't define this}
|
||||
i.e.~it is isometric.
|
||||
$(M,H)$ is equicontinuous, i.e.~it is isometric.
|
||||
In particular, $(M,T)$ is isometric.
|
||||
\end{enumerate}
|
||||
\item $M \neq \{\star\}$, i.e.~$(M,T)$ is non-trivial:
|
||||
|
@ -209,9 +212,9 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
|
|||
Let $X$ be a metric space
|
||||
and $\Gamma\colon X \to \R$ be upper semicontinuous.
|
||||
Then the set of continuity points of $\Gamma$ is comeager.
|
||||
\todo{Missing figure: upper semicontinuous function}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\notexaminable{
|
||||
Take $x$ such that $\Gamma$ is not continuous at $x$.
|
||||
Then there is an $\epsilon > 0$
|
||||
and $x_n \to x$ such that
|
||||
|
@ -227,6 +230,7 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
|
|||
and $B_q \setminus B_q^\circ$ is nwd
|
||||
as it is closed and has empty interior,
|
||||
so $\bigcup_{q \in \Q} F_q$ is meager.
|
||||
}
|
||||
\end{proof}
|
||||
|
||||
|
||||
|
|
|
@ -1,5 +1,8 @@
|
|||
\subsection{The order of a flow}
|
||||
\lecture{19}{2023-12-19}{Orders of flows}
|
||||
\subsection{The Order of a Flow}
|
||||
\lecture{19}{2023-12-19}{Orders of Flows}
|
||||
|
||||
% TODO ANKI-MARKER
|
||||
|
||||
|
||||
See also \cite[\href{https://terrytao.wordpress.com/2008/01/24/254a-lecture-6-isometric-systems-and-isometric-extensions/}{Lecture 6}]{tao}.
|
||||
|
||||
|
@ -71,7 +74,6 @@ equicontinuity coincide.
|
|||
i.e.~if $(Y_\alpha, f_{\alpha,\beta})$,
|
||||
$\beta < \alpha \le \Theta$
|
||||
are isometric, then the inverse limit $Y$ is isometric.%
|
||||
\todo{Why does an inverse limit exist?}
|
||||
% https://q.uiver.app/#q=WzAsNCxbMSwwLCJZX1xcYWxwaGEiXSxbMSwxLCJZX1xcYmV0YSJdLFswLDAsIlkiXSxbMiwwLCJYIl0sWzAsMSwiZl97XFxhbHBoYSwgXFxiZXRhfSJdLFsyLDAsImZfXFxhbHBoYSJdLFsyLDEsImZfXFxiZXRhIiwyXSxbMywwLCJcXHBpX1xcYWxwaGEiLDJdLFszLDEsIlxccGlfXFxiZXRhIl1d
|
||||
\[\begin{tikzcd}
|
||||
Y & {Y_\alpha} & X \\
|
||||
|
|
Loading…
Reference in a new issue