some small changes
Some checks failed
Build latex and deploy / checkout (push) Failing after 17m13s

This commit is contained in:
Josia Pietsch 2024-02-05 23:36:57 +01:00
parent 6c2a76d838
commit 59d595f9ef
Signed by: josia
GPG key ID: E70B571D66986A2D
4 changed files with 21 additions and 16 deletions

View file

@ -104,7 +104,7 @@
\forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast). \forall x \in X.~(\exists n.~(x,n) \in R \iff \exists! n.~(x,n)\in R^\ast).
\] \]
We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.% We say that $R^\ast$ \vocab[uniformization]{uniformizes} $R$.%
\footnote{Wikimedia has a \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{nice picture.}} \footnote{Wikimedia has a nice \href{https://upload.wikimedia.org/wikipedia/commons/4/4c/Uniformization_ill.png}{picture}.}
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
Let $\phi\colon R \to \Ord$ Let $\phi\colon R \to \Ord$

View file

@ -191,8 +191,7 @@ since $X^X$ has these properties.
Since $f$ is injective, we get that $x = f(x)$, Since $f$ is injective, we get that $x = f(x)$,
i.e.~$f = \id$. i.e.~$f = \id$.
Take $g' \in G$ such that $f = g' \circ g$.% Since $f \in Gg$, there exists $g' \in G$ such that $f = g' \circ g$.
%\footnote{This exists since $f \in Gg$.}
It is $g' = g'gg'$, It is $g' = g'gg'$,
so $\forall x .~g'(x) = g'(g g'(x))$. so $\forall x .~g'(x) = g'(g g'(x))$.

View file

@ -1,9 +1,6 @@
\subsection{Sketch of proof of \yaref{thm:l16:3}} \subsection{Sketch of proof of \yaref{thm:l16:3}}
\lecture{18}{2023-12-15}{Sketch of proof of \yaref{thm:l16:3}} \lecture{18}{2023-12-15}{Sketch of proof of \yaref{thm:l16:3}}
% TODO ANKI-MARKER
The goal for this lecture is to give a very rough The goal for this lecture is to give a very rough
sketch of \yaref{thm:l16:3} in the case of $|Z| = 1$. sketch of \yaref{thm:l16:3} in the case of $|Z| = 1$.
@ -21,7 +18,9 @@ F(x,x') \coloneqq \inf \{d(gx, gx') : g \in G\}.
\item $F(x,x') = F(x', x)$, \item $F(x,x') = F(x', x)$,
\item $F(x,x') \ge 0$ and $F(x,x') = 0$ iff $x = x'$. \item $F(x,x') \ge 0$ and $F(x,x') = 0$ iff $x = x'$.
\item $F(gx, gx') = F(x,x')$ since $G$ is a group. \item $F(gx, gx') = F(x,x')$ since $G$ is a group.
\item $F$ is an upper semi-continuous function on $X^2$, \item $F$ is an \vocab{upper semi-continuous}\footnote{%
Wikimedia has a nice \href{https://upload.wikimedia.org/wikipedia/commons/c/c0/Upper_semi.svg}{picture}.}
function on $X^2$,
i.e.~$\forall a \in R.~\{(x,x') \in X^2 : F(x,x') < a\} \overset{\text{open}}{\subseteq} X^2$. i.e.~$\forall a \in R.~\{(x,x') \in X^2 : F(x,x') < a\} \overset{\text{open}}{\subseteq} X^2$.
This holds because $F$ is the infimum of continuous functions This holds because $F$ is the infimum of continuous functions
@ -47,23 +46,28 @@ This will follow from the following lemma:
\begin{lemma} \begin{lemma}
\label{lem:ftophelper} \label{lem:ftophelper}
Let $F(x,x') < a$. Let $F(x,x') < a$.
\gist{%
Then there exists $\epsilon > 0$ such that Then there exists $\epsilon > 0$ such that
whenever $F(x',x'') < \epsilon$, then $F(x,x'') < a$. whenever $F(x',x'') < \epsilon$, then $F(x,x'') < a$.
}{Then $\exists \epsilon > 0.~\forall x''.~F(x',x'') < \epsilon \implies F(x,x'') < a$.}
\end{lemma} \end{lemma}
\begin{refproof}{def:ftop} \begin{refproof}{def:ftop}
\gist{%
We have to show that if $U_a(x_1) \cap U_b(x_2) \neq \emptyset$, We have to show that if $U_a(x_1) \cap U_b(x_2) \neq \emptyset$,
then this intersection is the union then this intersection is the union
of sets of this kind. of sets of this kind.
Let $x' \in U_a(x_1)$. }{}
Let $x' \in U_a(x_1) \cap U_b(x_2)$.
Then by \yaref{lem:ftophelper}, Then by \yaref{lem:ftophelper},
there exists $\epsilon_1 > 0$ with $U_{\epsilon_1}(x') \subseteq U_a(x_1)$. there exists $\epsilon_1 > 0$ with $U_{\epsilon_1}(x') \subseteq U_a(x_1)$.
Similarly there exists $\epsilon_2 > 0$ Similarly there exists $\epsilon_2 > 0$\gist{
such that $U_{\epsilon_2}(x') \subseteq U_b(x_2)$. such that $U_{\epsilon_2}(x') \subseteq U_b(x_2)$.}{.}
So for $\epsilon \le \epsilon_1, \epsilon_2$, So for $\epsilon \le \epsilon_1, \epsilon_2$,
we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$. we get $U_{\epsilon}(x') \subseteq U_a(x_1) \cap U_b(x_2)$.
\end{refproof} \end{refproof}
\begin{refproof}{lem:ftophelper}% \begin{refproof}{lem:ftophelper}%
\notexaminable{\footnote{This was not covered in class.} \notexaminable{\footnote{This was not covered in class.}
% TODO: maybe learn?
Let $T = \bigcup_n T_n$,% TODO Why does this exist? Let $T = \bigcup_n T_n$,% TODO Why does this exist?
$T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and $T_n$ compact, wlog.~$T_n \subseteq T_{n+1}$, and
@ -164,8 +168,7 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
\item One can show that $H$ is a topological group and $(M,H)$ \item One can show that $H$ is a topological group and $(M,H)$
is a flow.\footnote{This is non-trivial.} is a flow.\footnote{This is non-trivial.}
\item Since $H$ is compact, \item Since $H$ is compact,
$(M,H)$ is equicontinuous, %\todo{We didn't define this} $(M,H)$ is equicontinuous, i.e.~it is isometric.
i.e.~it is isometric.
In particular, $(M,T)$ is isometric. In particular, $(M,T)$ is isometric.
\end{enumerate} \end{enumerate}
\item $M \neq \{\star\}$, i.e.~$(M,T)$ is non-trivial: \item $M \neq \{\star\}$, i.e.~$(M,T)$ is non-trivial:
@ -209,9 +212,9 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
Let $X$ be a metric space Let $X$ be a metric space
and $\Gamma\colon X \to \R$ be upper semicontinuous. and $\Gamma\colon X \to \R$ be upper semicontinuous.
Then the set of continuity points of $\Gamma$ is comeager. Then the set of continuity points of $\Gamma$ is comeager.
\todo{Missing figure: upper semicontinuous function}
\end{theorem} \end{theorem}
\begin{proof} \begin{proof}
\notexaminable{
Take $x$ such that $\Gamma$ is not continuous at $x$. Take $x$ such that $\Gamma$ is not continuous at $x$.
Then there is an $\epsilon > 0$ Then there is an $\epsilon > 0$
and $x_n \to x$ such that and $x_n \to x$ such that
@ -227,6 +230,7 @@ i.e.~show that if $(Z,T)$ is a proper factor of a minimal distal flow
and $B_q \setminus B_q^\circ$ is nwd and $B_q \setminus B_q^\circ$ is nwd
as it is closed and has empty interior, as it is closed and has empty interior,
so $\bigcup_{q \in \Q} F_q$ is meager. so $\bigcup_{q \in \Q} F_q$ is meager.
}
\end{proof} \end{proof}

View file

@ -1,5 +1,8 @@
\subsection{The order of a flow} \subsection{The Order of a Flow}
\lecture{19}{2023-12-19}{Orders of flows} \lecture{19}{2023-12-19}{Orders of Flows}
% TODO ANKI-MARKER
See also \cite[\href{https://terrytao.wordpress.com/2008/01/24/254a-lecture-6-isometric-systems-and-isometric-extensions/}{Lecture 6}]{tao}. See also \cite[\href{https://terrytao.wordpress.com/2008/01/24/254a-lecture-6-isometric-systems-and-isometric-extensions/}{Lecture 6}]{tao}.
@ -71,7 +74,6 @@ equicontinuity coincide.
i.e.~if $(Y_\alpha, f_{\alpha,\beta})$, i.e.~if $(Y_\alpha, f_{\alpha,\beta})$,
$\beta < \alpha \le \Theta$ $\beta < \alpha \le \Theta$
are isometric, then the inverse limit $Y$ is isometric.% are isometric, then the inverse limit $Y$ is isometric.%
\todo{Why does an inverse limit exist?}
% https://q.uiver.app/#q=WzAsNCxbMSwwLCJZX1xcYWxwaGEiXSxbMSwxLCJZX1xcYmV0YSJdLFswLDAsIlkiXSxbMiwwLCJYIl0sWzAsMSwiZl97XFxhbHBoYSwgXFxiZXRhfSJdLFsyLDAsImZfXFxhbHBoYSJdLFsyLDEsImZfXFxiZXRhIiwyXSxbMywwLCJcXHBpX1xcYWxwaGEiLDJdLFszLDEsIlxccGlfXFxiZXRhIl1d % https://q.uiver.app/#q=WzAsNCxbMSwwLCJZX1xcYWxwaGEiXSxbMSwxLCJZX1xcYmV0YSJdLFswLDAsIlkiXSxbMiwwLCJYIl0sWzAsMSwiZl97XFxhbHBoYSwgXFxiZXRhfSJdLFsyLDAsImZfXFxhbHBoYSJdLFsyLDEsImZfXFxiZXRhIiwyXSxbMywwLCJcXHBpX1xcYWxwaGEiLDJdLFszLDEsIlxccGlfXFxiZXRhIl1d
\[\begin{tikzcd} \[\begin{tikzcd}
Y & {Y_\alpha} & X \\ Y & {Y_\alpha} & X \\