This commit is contained in:
parent
41fe970a0b
commit
53577d9b57
2 changed files with 163 additions and 0 deletions
162
inputs/tutorial_14.tex
Normal file
162
inputs/tutorial_14.tex
Normal file
|
@ -0,0 +1,162 @@
|
|||
\tutorial{14}{2024-01-30}{}
|
||||
|
||||
\subsection{Sheet 12}
|
||||
\nr 1
|
||||
% Examinable
|
||||
|
||||
% TODO (there is a more direct way to do it, not using analytic / coanalytic)
|
||||
\nr 2
|
||||
% Examinable
|
||||
|
||||
|
||||
\nr 3
|
||||
% somewhat examinable (for 1.0)
|
||||
|
||||
\nr 4
|
||||
|
||||
% Examinable!
|
||||
|
||||
% RECAP
|
||||
Let $X$ be a metrizable topological space.
|
||||
|
||||
Let $K(X) \coloneqq \{ K \subseteq X : \text{ compact}\}$.
|
||||
|
||||
The Vietoris topology has a basis given by
|
||||
$\{K \subseteq U\}$, $U$ open (type 1)
|
||||
and $\{K : K \cap U \neq \emptyset\}$, $U$ open (type 2).
|
||||
|
||||
The Hausdorff metric on $K(X)$,
|
||||
$d_H(K,L)$ is the smallest $\epsilon$
|
||||
such that $K \subseteq B_{\epsilon}(L) \land L \subseteq B_\epsilon(K)$.
|
||||
This is equal to the maximal point to set distance,
|
||||
$\max_{a \in A} d(a,B)$.
|
||||
|
||||
On previous sheets, we checked that $d_H$ is a metric.
|
||||
If $X$ is separable, then so is $K(X)$.
|
||||
% END RECAP
|
||||
|
||||
\begin{fact}
|
||||
Let $(X,d)$ be a complete metric space.
|
||||
Then so is $(K(X), d_H)$.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
We need to show that $(K(X), d_H)$ is complete.
|
||||
|
||||
Let $(K_n)_{ n< \omega}$ be Cauchy in $(K(X), d_H)$.
|
||||
Wlog.~$K_n \neq \emptyset$ for all $n$.
|
||||
|
||||
Let $K = \{ x \in X : \forall x \in U \overset{\text{open}}{\subseteq} X.~
|
||||
\text{ $X$ intersects $K_n$ for infinitely many $n$}\}$.
|
||||
|
||||
Equivalently,
|
||||
$K = \{x : x \text{ is a cluster point of some subsequence $(x_n)$ with $x_n \in K_n$ for all $K_n$}\}$.
|
||||
|
||||
(A cluster point is a limit of some subsequence).
|
||||
|
||||
\begin{claim}
|
||||
$K_n \to K$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
Note that $K$ is closed (the complement is open).
|
||||
|
||||
|
||||
\begin{claim}
|
||||
$K \neq \emptyset$.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
As $(K_n)$ is Cauchy,
|
||||
there exists a sequence $(x_n)$ with $x_n \in K_n$
|
||||
such that there exists a subsequence $(x_{n_i})$
|
||||
with $d(x_{n_i}, x_{n_{i+1}}) < \frac{1}{2^{i+1}}$.
|
||||
|
||||
Let $n_0,n_1,\ldots$
|
||||
be such that $d_H(K_a, K_b) < 2^{-i-1}$
|
||||
for $a,b \ge n_i$.
|
||||
|
||||
Pick $x_{n_0} \in K_{n_0}$.
|
||||
Then let $x_{n_{i+1}} \in K_{n_{i+1}}$ be such that
|
||||
$d(x_{n_i}, x_{n_{i+1}})$ is minimal.
|
||||
|
||||
Then $x_{n_i} \xrightarrow{i \to \infty} x$
|
||||
and we have $x \in K$.
|
||||
\end{subproof}
|
||||
|
||||
\begin{claim}
|
||||
$K$ is compact.
|
||||
\end{claim}
|
||||
\begin{subproof}
|
||||
We show that $K$ is complete and totally bounded.
|
||||
Since $K$ is a closed subset of a complete
|
||||
space, it is complete.
|
||||
|
||||
So it suffices to show that $K$ is totally bounded.
|
||||
Let $\epsilon > 0$
|
||||
Take $N$ such that $d_H(K_i,K_j) < \epsilon$
|
||||
for all $i,j \ge N$.
|
||||
|
||||
Cover $K_N$ with finitely many $\epsilon$-balls
|
||||
with centers $z_i$.
|
||||
|
||||
Take $x \in K$.
|
||||
Then the $\epsilon$-ball around $x$ intersects $K_j$
|
||||
for some $j \ge N$, so
|
||||
there exists $z_i$ such that $d(x,z_i) < 3\epsilon$.
|
||||
|
||||
Note that a subset of a bigger space is totally
|
||||
bounded iff it is totally bounded in itself.
|
||||
\end{subproof}
|
||||
|
||||
Now we show that $K_n \to K$
|
||||
in $K(X)$.
|
||||
|
||||
Let $\epsilon > 0$.
|
||||
Take $N$ such that for all $m,n \ge N$,
|
||||
$d_H(K_m,K_n) < \frac{\epsilon}{2}$.
|
||||
We'll first show that $\delta(K, K_n) < \epsilon$ for all $n > N$.
|
||||
|
||||
Let $x \in K$.
|
||||
Take $(x_{n_i})$ with $x_{n_i} \in K_{n_i}, x_{n_i} \to x$.
|
||||
Then for large $i$,
|
||||
we have $n_i \ge N$ and $d(x_{n_i}, x) < \frac{\epsilon}{2}$.
|
||||
Take $n \ge N$.
|
||||
Then there exists $y_n \in K_n$
|
||||
with $d(y_n, x_{n_i}) < \frac{\epsilon}{2}$.
|
||||
So $d(x,y_n) < \epsilon$.
|
||||
|
||||
|
||||
Now show that $\delta(K_n, K) < \epsilon$ for all $n \ge N$.
|
||||
|
||||
Take $y \in K_n$.
|
||||
Show that $d(y,K) < \epsilon$.
|
||||
To do this, construct a sequence of $y_{n_i} \in K_{n_i}$
|
||||
starting with $y$ such that $d(y_{n_i}, y_{n_{i+1}}) < \frac{\epsilon}{2^{i+2}}$.
|
||||
(same trick as before).
|
||||
\end{subproof}
|
||||
|
||||
\end{proof}
|
||||
|
||||
\begin{fact}
|
||||
If $X$ is compact metrisable,
|
||||
then so is $K(X)$.
|
||||
\end{fact}
|
||||
\begin{proof}
|
||||
We have just shown that $X$ is complete.
|
||||
So it suffices to show that it is totally bounded.
|
||||
|
||||
Let $\epsilon > 0$.
|
||||
Cover $X$ with finitely many $\epsilon$-balls.
|
||||
Let $F$ be the set of the centers of these balls.
|
||||
|
||||
Consider $\cP(F) \setminus \{\emptyset\}$.
|
||||
Clearly $\{B_x^{d_H} : x \in \cP(F) \setminus \{\emptyset\} \}$
|
||||
is a finite cover of $K(X)$.
|
||||
\end{proof}
|
||||
|
||||
|
||||
% TODO complete and totally bounded Sutherland metric and topological spaces
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -73,6 +73,7 @@
|
|||
\input{inputs/tutorial_11}
|
||||
\input{inputs/tutorial_12b}
|
||||
\input{inputs/tutorial_12}
|
||||
\input{inputs/tutorial_14}
|
||||
|
||||
\section{Facts}
|
||||
\input{inputs/facts}
|
||||
|
|
Loading…
Reference in a new issue