This commit is contained in:
parent
206b61941e
commit
4b9bbd2ef0
3 changed files with 172 additions and 5 deletions
|
@ -84,5 +84,3 @@ Let $X_n \coloneqq (S^1)^n$ and $X \coloneqq (S^1)^{\N}$.
|
|||
\begin{corollary}
|
||||
The order of $(X,\tau)$ is $\omega$.
|
||||
\end{corollary}
|
||||
\todo{I could not attend lecture 21 as I was sick. The official notes on the lecture are very short.
|
||||
Is something missing in the official notes?}
|
||||
|
|
|
@ -127,6 +127,7 @@ For this we define
|
|||
% \end{example}
|
||||
|
||||
\begin{theorem}[Beleznay Foreman]
|
||||
\label{thm:distalminimalofallranks}
|
||||
Whenever $I = \eta$ for some $\eta < \omega_1$,
|
||||
then
|
||||
\[
|
||||
|
@ -136,6 +137,7 @@ For this we define
|
|||
In particular such flows exist.
|
||||
\end{theorem}
|
||||
\begin{proof}[sketch]
|
||||
\leavevmode
|
||||
\begin{itemize}
|
||||
\item Distality:
|
||||
For all $\overline{f} \in \mathbb{K}_I$,
|
||||
|
@ -176,7 +178,7 @@ For this we define
|
|||
Fix a countable dense set $(\overline{x_n})$ in $\mathbb{K}^I$.
|
||||
For $\epsilon \in \Q$ let
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
V_{j,m,n,\epsilon} &\coloneqq & \{\overline{f} \in \mathbb{K}_I : \\
|
||||
V_{j,m,n,\epsilon} &\coloneqq \{\overline{f} \in \mathbb{K}_I :& \\
|
||||
&&\text{if } \Pi_{j+1}(\overline{x}_n) = \Pi_{j+1}(\overline{x_m}),\\
|
||||
&&\text{then there are $k_m$, $k_n$, $\overline{z}$ such that}\\
|
||||
&&\pi_j(\overline{x_n}) = \pi_j(\overline{z}), \forall k> j+1.~z_k = 1,\\
|
||||
|
|
167
inputs/lecture_23.tex
Normal file
167
inputs/lecture_23.tex
Normal file
|
@ -0,0 +1,167 @@
|
|||
\lecture{23}{2024-01-19}{More sketches of ideas of Beleznay and Foreman}
|
||||
|
||||
\begin{notation}
|
||||
Let $X$ be a Polish space and $\cP$ a property of elements of $X$,
|
||||
then we say that $x_0 \in X$ is \vocab{generic}
|
||||
if
|
||||
\[
|
||||
A_\cP \coloneqq \{x \in X \colon \cP(x)\}
|
||||
\]
|
||||
is comeager
|
||||
and $x_0 \in A_\cP$.
|
||||
\end{notation}
|
||||
For example let $X = \mathbb{K}_I$
|
||||
and $\cP$ the property of being a distal minimal flow.
|
||||
\begin{abuse}
|
||||
We will usually omit $\cP$.
|
||||
\end{abuse}
|
||||
|
||||
|
||||
Let $I$ be a linear order
|
||||
|
||||
\begin{theorem}[Beleznay and Foreman]
|
||||
The set of distal minimal flows is $\Pi_1^1$-complete.
|
||||
\end{theorem}
|
||||
|
||||
\begin{proof}[sketch]
|
||||
Consider $\WO(\N) \subset \LO(\N)$.
|
||||
We know that this is $\Pi_1^1$-complete. % TODO ref
|
||||
|
||||
Let
|
||||
\begin{IEEEeqnarray*}{rCll}
|
||||
S & \coloneqq & \{ x \in \LO(\N) :& x \text{ has a least element},\\
|
||||
&&& \text{for any $t$, there is $t \oplus 1$, the successor of $t$.}\}
|
||||
\end{IEEEeqnarray*}
|
||||
\todo{Exercise sheet 12}
|
||||
$S$ is Borel.
|
||||
|
||||
We will % TODO ?
|
||||
construct a reduction
|
||||
\begin{IEEEeqnarray*}{rCl}
|
||||
M \colon S &\longrightarrow & C(\mathbb{K}^\N,\mathbb{K})^\N. %\\
|
||||
% \alpha &\longmapsto & M(\alpha)
|
||||
\end{IEEEeqnarray*}
|
||||
We want that $\alpha \in \WO(\N) \iff M(\alpha)$
|
||||
codes a distal minimal flow of rank $\alpha$.
|
||||
|
||||
\begin{enumerate}[1.]
|
||||
\item For any $\alpha \in S$, $M(\alpha)$ is a code for
|
||||
a flow which is coded by a generic $(f_i)_{i \in I}$.
|
||||
Specifically we will take a flow
|
||||
corresponding to some $(f_i)_{i \in I}$
|
||||
which is in the intersection of all
|
||||
$U_n$, $V_{j,m,n,\frac{p}{q}}$
|
||||
(cf.~proof of \yaref{thm:distalminimalofallranks}).
|
||||
|
||||
\item If $\alpha \in \WO(\N)$,
|
||||
then additionally $(f_i)_{i \in I}$ will code
|
||||
a distal minimal flow of ordertype $\alpha$.
|
||||
\end{enumerate}
|
||||
|
||||
One can get a Borel map $S \ni \alpha \mapsto \{T_n^{\alpha} : n \in \N\}$,
|
||||
such that $T^{\alpha}_n$ is closed,
|
||||
$T^{\alpha}_n \neq \emptyset$, $\diam(T^\alpha_n) \xrightarrow{n \to \infty} 0$,
|
||||
$T^\alpha_{n+1} \subseteq T^\alpha_n$,
|
||||
$T^{\alpha}_n \subseteq W^{\alpha}_n$,
|
||||
where $W^{\alpha}_n$ is an enumeration of $U_m^\alpha$,$V^\alpha_{j,m,n,\frac{p}{q}}$.
|
||||
Then $(f_i)_{i \in I} \in \bigcap_{n} T_{n}^\alpha$.
|
||||
\end{proof}
|
||||
\begin{lemma}
|
||||
Let $\{(X_\xi, T) : \xi \le \eta\}$ be a normal
|
||||
quasi-isometric system
|
||||
and $\{(Y_i, T) : i \in I\}$
|
||||
such that
|
||||
\begin{enumerate}[(i)]
|
||||
\item $I \in S$ and additionally $I$ has a largest element.
|
||||
\item $Y_0$ is the trivial flow and $Y_\infty = X_\eta$,
|
||||
where $0$ and $\infty$ denote the minimal
|
||||
resp.~maximal element of $I$.
|
||||
\item $\forall i < j$
|
||||
% https://q.uiver.app/#q=WzAsMyxbMCwwLCIoWF9cXGV0YSwgVCkiXSxbMSwwLCJZX2oiXSxbMSwxLCJZX2kiXSxbMCwxLCJcXHBpX2oiXSxbMCwyLCJcXHBpX2kiLDJdLFsxLDIsIlxccGleal9pIl1d
|
||||
\[\begin{tikzcd}
|
||||
{(X_\eta, T)} & {Y_j} \\
|
||||
& {Y_i}
|
||||
\arrow["{\pi_j}", from=1-1, to=1-2]
|
||||
\arrow["{\pi_i}"', from=1-1, to=2-2]
|
||||
\arrow["{\pi^j_i}", from=1-2, to=2-2]
|
||||
\end{tikzcd}\]
|
||||
\item If $i \in I$ is a limit (i.e.~there does not exist
|
||||
an immediate predecessor),
|
||||
then $(Y_i,T)$ is the inverse limit
|
||||
of $\{(Y_j,T) : j < i\}$
|
||||
with respect to the factor maps.
|
||||
\item $(Y_{i\oplus 1}, T)$ is a maximal isometric
|
||||
extension of $(Y_i, T)$
|
||||
in $(X_\eta, T)$.
|
||||
\end{enumerate}
|
||||
|
||||
Then $I$ is well-ordered with $\otp(Y) = \eta + 1$.
|
||||
\end{lemma}
|
||||
|
||||
\begin{theorem}[Beleznay Foreman]
|
||||
The order %TODO (Furstenberg rank)
|
||||
is a $\Pi^1_1$-rank.
|
||||
\end{theorem}
|
||||
For the proof one shows that $\le^\ast$ and $<^\ast$
|
||||
are $\Pi^1_1$, where
|
||||
\begin{enumerate}[(1)]
|
||||
\item $p_1 \le^\ast p_2$ iff $p_1$ codes
|
||||
a distal minimal flow and if
|
||||
$p_2$ also codes a distal minimal flow,
|
||||
then $\mathop{order}(p_1) \le \mathop{order}(p_2)$.
|
||||
\item $p_1 <^\ast p_2$ iff $p_1$ codes
|
||||
a distal minimal flow and if
|
||||
$p_2$ also codes a distal minimal flow,
|
||||
then $\mathop{order}(p_1) < \mathop{order}(p_2)$.
|
||||
\end{enumerate}
|
||||
|
||||
One uses that $(Y_{i+1}, T)$ is a maximal
|
||||
isometric extension of $(Y_i,T)$
|
||||
ind $(X,T)$
|
||||
iff for all $x_1,x_2$ from a fixed countable dense set
|
||||
in $X$,
|
||||
for all $i$ with $\pi_{i\oplus 1}(x_1) = \pi_{i \oplus 1}(x_2)$,
|
||||
there is a sequence $(z_k)$ such that $\pi_i(z_k) = \pi_i(x_1)$,
|
||||
$F(z_k, x_1) \to 0$, $F(z_k, x_2) \to 0$.
|
||||
|
||||
\begin{proposition}
|
||||
The order of a minimal distal flow on a separable,
|
||||
metric space is countable.
|
||||
\end{proposition}
|
||||
\begin{proof}
|
||||
Let $(X,\Z)$ be such a flow,
|
||||
i.e.~ $X$ is separable, metric and compact.
|
||||
|
||||
Produce a normal quasi-isometric system
|
||||
\[
|
||||
\{(X_\alpha, \Z) : \alpha \le \beta\}
|
||||
\]
|
||||
with $(X_\beta, \Z) = (X,\Z)$.
|
||||
We need to show that $\beta < \omega_1$.
|
||||
|
||||
Let $\pi_\alpha\colon (X,\Z) \to (X_\alpha, \Z)$.
|
||||
Fix $x_0 \in X$.
|
||||
For every $\alpha$
|
||||
consider $\pi_\alpha^{-1}\left( \pi_\alpha(x_0) \right)
|
||||
= F_\alpha \overset{\text{closed}}{\subseteq} X$.
|
||||
|
||||
\begin{itemize}
|
||||
\item For $\alpha_1 < \alpha_2 \le \beta$
|
||||
we have that $F_{\alpha_1} \supseteq F_{\alpha_2}$.
|
||||
\item For limits $\gamma \le \beta$,
|
||||
we have that $F_\gamma = \bigcap_{\alpha < \gamma} F_\alpha$,
|
||||
since $(X_\gamma,\Z)$ is the inverse limit of
|
||||
$\{(X_{\alpha}, \Z):\alpha < \gamma\}$.
|
||||
\item For all $\alpha < \beta$, $F_{\alpha+1} \subsetneq F_\alpha$,
|
||||
because $\pi^{\alpha+1}_\alpha \colon (X_{\alpha+1},\Z) \to (X_\alpha,\Z)$
|
||||
is not a bijection
|
||||
and all the fibers are isomorphic.
|
||||
\end{itemize}
|
||||
|
||||
So $(F_\alpha)_{\alpha \le \beta}$ is a strictly
|
||||
increasing chain of closed subsets.
|
||||
But $X$ is second countable,
|
||||
so $\beta$ is countable.
|
||||
\end{proof}
|
||||
|
||||
|
Loading…
Reference in a new issue