Lecture 3
This commit is contained in:
parent
73eb4f1645
commit
394cc8ddcf
3 changed files with 264 additions and 1 deletions
257
inputs/lecture_03.tex
Normal file
257
inputs/lecture_03.tex
Normal file
|
@ -0,0 +1,257 @@
|
|||
\lecture{03}{2023-10-17}{Embedding of the cantor space into polish spaces}
|
||||
|
||||
% ? \subsection{Trees} TODO
|
||||
|
||||
|
||||
\begin{notation}
|
||||
Let $A \neq \emptyset$, $n \in \N$.
|
||||
Then
|
||||
\[
|
||||
A^n \coloneqq \{s\colon \{0,1,\ldots, n-1\} \to A \}
|
||||
\]
|
||||
is the set of $n$-element \vocab[Sequence]{sequences}.
|
||||
We often write
|
||||
$(s_0,s_1,\ldots,s_{n-1})$.
|
||||
|
||||
If $s = (s_0,\ldots,s_{n-1})$,
|
||||
then $n$ is the \vocab{length} of $s$,
|
||||
denoted by $|s|$.
|
||||
|
||||
If $n = 0$ there exists only the empty sequence,
|
||||
i.e.~$A^0 = \{\emptyset\}$ and $|\emptyset| = 0$.
|
||||
|
||||
We set
|
||||
\[
|
||||
A^{<\N} \coloneqq \bigcup_{n=0}^{\infty} A^n
|
||||
\]
|
||||
and
|
||||
\[
|
||||
A^{\N} \coloneqq \{x \colon \N \to A\}.
|
||||
\]
|
||||
|
||||
If $s \in A^n$ and $m \le n$,
|
||||
we let
|
||||
$s\defon{m} \coloneqq (s_0,\ldots,s_{m-1})$.
|
||||
|
||||
Let $s,t \in A^{<\N}$.
|
||||
We say that $s$ is an \vocab{initial segment}
|
||||
of $t$ (or $t$ is an \vocab{extension} of $s$)
|
||||
if there exists an $n$ such that $s = t\defon{|s|}$.
|
||||
We write this as $s \subseteq t$.
|
||||
|
||||
We say that $s$ and $t$ are \vocab{compatible}
|
||||
if $s \subseteq t$ or $t \subseteq s$.
|
||||
Otherwise the are \vocab{incompatible},
|
||||
we denote that as $s \perp t$.
|
||||
|
||||
The \vocab{concatenation}
|
||||
of $s = (s_0,\ldots, s_{n-1})$
|
||||
and $t = (t_0,\ldots, t_{m-1})$
|
||||
is the sequence
|
||||
$s\concat t \coloneqq (s_0,\ldots,s_{n-1}, t_0,\ldots, t_{n-1})$
|
||||
|
||||
In the case of $t = (a)$
|
||||
we also write $s\concat a$ for $s\concat (a)$.
|
||||
|
||||
Similarly, if $x \in A^{\N}$
|
||||
we can write $x = (x_0,x_1,\ldots)$.
|
||||
If $n \in \N$, $x\defon{n} \coloneqq (x_0,\ldots,x_{n-1})$,
|
||||
define extension, initial segments
|
||||
and concatenation of a finite sequence with an infinite one.
|
||||
\end{notation}
|
||||
|
||||
\begin{definition}
|
||||
A \vocab{tree}
|
||||
on a set $A$ is a subset $T \subseteq A^{<\N}$
|
||||
closed under initial segments,
|
||||
i.e.~if $t \in T, s \subseteq t \implies s \in T$.
|
||||
Elements of trees are called \vocab{nodes}.
|
||||
|
||||
A \vocab{leave} is an element of $T$,
|
||||
that has no extension in $t$.
|
||||
|
||||
An \vocab{infinite branch} of a tree $T$
|
||||
is $x \in A^{\N}$
|
||||
such that $\forall n.~x\defon{n} \in T$.
|
||||
|
||||
The \vocab{body} of $T$ is the set of all
|
||||
infinite branches:
|
||||
\[
|
||||
[T] \coloneqq\{x \in A^{\N}: \forall n. x\defon{n} \in T\}.
|
||||
\]
|
||||
|
||||
We say that $T$ is \vocab{pruned},
|
||||
iff
|
||||
\[
|
||||
\forall t\in T.\exists s \supsetneq t.~s \in T.
|
||||
\]
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}
|
||||
A \vocab{Cantor scheme}
|
||||
on a set $X$ is a family
|
||||
$(A_s)_{s \in 2^{< \N}}$
|
||||
of subsets of $X$ such that
|
||||
\begin{enumerate}[i)]
|
||||
\item $\forall s \in 2^{<\N}.~A_{s \concat 0} \cap A_{s \concat 1} = \emptyset$.
|
||||
\item $\forall s \in 2^{<\N}, i \in 2.~A_{s \concat i} \subseteq A_s$.
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}
|
||||
A topological space
|
||||
is \vocab{perfect}
|
||||
if it has no isolated points,
|
||||
i.e.~for any $U \neq \emptyset$ open,
|
||||
there $x \neq y$ such that $x, y \in U$.
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
Let $X \neq \emptyset$
|
||||
be a perfect Polish space.
|
||||
Then there is an embedding
|
||||
of the Cantor space $2^{\N}$
|
||||
into $X$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
We will define a Cantor scheme
|
||||
$(U_s)_{s \in 2^{<\N}}$
|
||||
such that $\forall s \in 2^{< \N}$.
|
||||
\begin{enumerate}[(i)]
|
||||
\item $U_s \neq \emptyset$ and open,
|
||||
\item $\diam(U_s) \le 2^{-|s|}$,
|
||||
\item $\overline{U_{s \concat i}} \subseteq U_s$
|
||||
for $i \in 2$.
|
||||
\end{enumerate}
|
||||
|
||||
We define $U_s$ inductively on the length of $s$.
|
||||
|
||||
For $U_{\emptyset}$ take any non-empty open set
|
||||
with small enough diameter.
|
||||
|
||||
Given $U_s$, pick $x \neq y \in U_s$
|
||||
and let $U_{s \concat 0} \ni x$,
|
||||
$U_{s \concat 1} \ni y$
|
||||
be disjoint, open,
|
||||
of diameter $\le \frac{1}{2^{|s| +1}}$
|
||||
and such that $\overline{U_{s\concat 0}}, \overline{U_{S \concat 1}} \subseteq U_s$.
|
||||
|
||||
Let $x \in 2^{\N}$.
|
||||
Then let $f(x)$ be the unique point in $X$
|
||||
such that
|
||||
\[
|
||||
\{f(x)\} = \bigcap_{n} U_{x \defon n} = \bigcap_{n} \overline{U_{x \defon n}.
|
||||
\]
|
||||
(This is nonempty as $X$ is a completely metrizable space.)
|
||||
It is clear that $f$ is injective and continuous.
|
||||
% TODO: more details
|
||||
$2^{\N}$ is compact, hence $f^{-1}$ is also continuous.
|
||||
\end{proof}
|
||||
|
||||
\begin{corollary}
|
||||
Every nonempty perfect Polish
|
||||
space $X$ has cardinality $C = 2^{\aleph_0}$
|
||||
% TODO: eulerscript C ?
|
||||
\end{corollary}
|
||||
\begin{proof}
|
||||
Since the cantor space embeds into $X$,
|
||||
we get the lower bound.
|
||||
Since $X$ is second countable and Hausdorff,
|
||||
we get the upper bound.
|
||||
\end{proof}
|
||||
|
||||
\begin{theorem}
|
||||
Any Polish space is countable
|
||||
or it has cardinality $C$. % TODO C
|
||||
\end{theorem}
|
||||
\todo{Homework 3}
|
||||
|
||||
|
||||
\begin{definition}
|
||||
A \vocab{Lusin scheme} on a set $X$
|
||||
is a family $(A_s)_{s \in \N^{<\N}}$
|
||||
of subsets of $X $
|
||||
such that
|
||||
\begin{enumerate}[(i)]
|
||||
\item $A_{s \concat i} \cap A_{s \concat j} = \emptyset$
|
||||
for all $j \neq i \in \N$, $s \in \N^{<\N}$.
|
||||
\item $A_{s \concat i} \subseteq A_s$
|
||||
for all $i \in \N, s \in \N^{<\N}$.
|
||||
\end{enumerate}
|
||||
\end{definition}
|
||||
|
||||
\begin{theorem}
|
||||
\label{thm:bairetopolish}
|
||||
Let $X \neq \emptyset$ be a Polish space.
|
||||
Then there is a closed subset
|
||||
\[
|
||||
D \subseteq \N^\N \text{\reflectbox{$\coloneqq$}} \cN
|
||||
% TODO correct N for the Baire space?
|
||||
\]
|
||||
and a continuous bijection from
|
||||
$D$ onto $X$ (the inverse does not need to be continuous).
|
||||
|
||||
Moreover there is a continuous surjection $g: \cN \to X$
|
||||
extending $f$.
|
||||
\end{theorem}
|
||||
\begin{definition}
|
||||
An $F_\sigma$ set is the
|
||||
countable union of closed sets,
|
||||
i.e.~the complement of a $G_\delta$ set.
|
||||
\end{definition}
|
||||
\begin{observe}
|
||||
\begin{itemize}
|
||||
\item Any open set is $F {\sigma}$.
|
||||
\item In metric spaces the intersection of an open and closed set is $F_\sigma$.
|
||||
\end{itemize}
|
||||
\end{observe}
|
||||
\begin{refproof}{thm:bairetopolish}
|
||||
Let $d$ be a complete metric on $X$.
|
||||
W.l.o.g.~$\diam(X) \le 1$.
|
||||
We construct a Lusin scheme
|
||||
$(F_s)_{s \in \N^{<\N}}$
|
||||
such that $F_s \subseteq X$
|
||||
and
|
||||
\begin{enumerate}[(i)]
|
||||
\item $F_\emptyset = X$,
|
||||
\item $F_s$ is $F_\sigma$ for all $s$.
|
||||
\item The $F_{s \concat i}$ partition $F_s$,
|
||||
i.e.~$F_{s} = \bigsqcup_i F_{s \concat i}$.
|
||||
|
||||
Furthermore we want that
|
||||
$\overline{F_{s \concat i}} \subseteq F_s$
|
||||
for all $i$.
|
||||
\item $\diam(F_s) \le 2^{-|s|}$.
|
||||
\end{enumerate}
|
||||
|
||||
Suppose we already have $F_s \text{\reflectbox{$\coloneqq$}} F$.
|
||||
We need to construct a partition $(F_i)_{i \in \N}$
|
||||
of $F$ with $\overline{F_i} \subseteq F$
|
||||
and $\diam(F_i) < \epsilon$
|
||||
for $\epsilon = 2^{-|s| - 1}$,
|
||||
such that the $F_i$ are $F_\sigma$.
|
||||
|
||||
\paragraph{Step 1}
|
||||
Write $F \coloneqq \bigcup_{i \in \N} C_i$
|
||||
for some closed sets $C_i$.
|
||||
W.l.o.g.~$C_i \subseteq C_{i+1}$.
|
||||
|
||||
Let $F_i^0 \coloneqq C_{i+1} \setminus C_i$.
|
||||
These $F_i^0$ are $F_\sigma$,
|
||||
and form a partition of $F$.
|
||||
Furthermore $\overline{F_i^0} \subseteq F$.
|
||||
|
||||
However the diameter might be too large.
|
||||
Fix $i \in \N$ and consider $F_i^0$.
|
||||
Cover it with countably many open balls $B_1, B_2,\ldots$
|
||||
of diameter smaller than $\epsilon$.
|
||||
The sets $D_i \coloneqq F_i^0 \cap B_i \setminus (B_1 \cup \ldots \cup B_{i-1})$
|
||||
are $F_\sigma$, disjoint
|
||||
and $F_i^0 = \bigcup_{j} D_j$.
|
||||
|
||||
|
||||
|
||||
|
||||
\end{refproof}
|
||||
|
||||
|
|
@ -124,7 +124,12 @@
|
|||
\DeclareSimpleMathOperator{Ord}
|
||||
\DeclareSimpleMathOperator{trcl}
|
||||
\DeclareSimpleMathOperator{tcl}
|
||||
\newcommand{\concat}{{}^\frown}
|
||||
|
||||
\newcommand{\concat}{\mathop{{}^{\scalebox{.7}{$\smallfrown$}}}}
|
||||
|
||||
%https://tex.stackexchange.com/questions/73437/how-do-i-typeset-the-concatenation-of-strings-properly
|
||||
%\mathbin{\raisebox{1ex}{\scalebox{.7}{$\frown$}}}%
|
||||
|
||||
\DeclareMathOperator{\hght}{height}
|
||||
|
||||
\newcommand\lecture[3]{\hrule{\color{darkgray}\hfill{\tiny[Lecture #1, #2]}}}
|
||||
|
|
|
@ -26,6 +26,7 @@
|
|||
|
||||
\input{inputs/lecture_01}
|
||||
\input{inputs/lecture_02}
|
||||
\input{inputs/lecture_03}
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue