This commit is contained in:
parent
8c3be56270
commit
227e2ac7b9
2 changed files with 14 additions and 20 deletions
|
@ -151,16 +151,17 @@ By Zorn's lemma, this will follow from
|
|||
& {(Z,T)}
|
||||
\arrow[from=1-1, to=1-3]
|
||||
\arrow[from=2-2, to=1-3]
|
||||
\arrow["{\text{isometric extension}}"{description}, from=1-1, to=2-2]
|
||||
\arrow["{\text{isometric extension}}"{description}, from=1-1, to=2-2]
|
||||
\end{tikzcd}\]
|
||||
\end{theorem}
|
||||
\yaref{thm:furstenberg} allows us to talk about ranks of distal minimal flows:
|
||||
\begin{definition}
|
||||
Let $(X, \Z)$ be distal minimal.
|
||||
Then $\rank((X,\Z)) \coloneqq \min \{\eta : (X, \Z) \cong (X_\eta, \Z)\}$
|
||||
where $(X_{\eta}, \Z)$ is as from the definition of quasi-isometric flows,
|
||||
i.e.~$\rank((X,\Z))$ is the minimal height such
|
||||
that a tower as in the definition exists.
|
||||
\begin{definition}[{\cite[{}13.1]{Furstenberg}}]
|
||||
Let $(X,T)$ be a quasi-isometric flow,
|
||||
and let $\eta$ be the smallest ordinal
|
||||
such that there exists a quasi-isometric system $\{(X_\xi, T), \xi \le \eta\}$
|
||||
with $(X,T) = (X_\xi, T)$.
|
||||
Then $\eta$ is called the \vocab{rank} or \vocab{order} of the flow
|
||||
and is denoted by $\rank((X,T))$.
|
||||
\end{definition}
|
||||
|
||||
\begin{definition}+
|
||||
|
|
|
@ -35,20 +35,13 @@ equicontinuity coincide.
|
|||
By equicontinuity of $T$ we get that $\tilde{d}$ and $d$
|
||||
induce the same topology on $X$.
|
||||
\end{proof}
|
||||
\gist{
|
||||
Recall that we defined the order of a quasi-isometric flow
|
||||
to be the minimal number of steps required when building the tower
|
||||
to reach the flow with a quasi-isometric system (cf.~\yaref{thm:l16:3},
|
||||
\yaref{def:floworder}).
|
||||
}{}
|
||||
|
||||
|
||||
\begin{question}
|
||||
What is the minimal number of steps required
|
||||
when building the tower to reach the flow
|
||||
as in \yaref{thm:l16:3}?
|
||||
\end{question}
|
||||
\begin{definition}[{\cite[{}13.1]{Furstenberg}}]
|
||||
Let $(X,T)$ be a quasi isometric flow,
|
||||
and let $\eta$ be the smallest ordinal
|
||||
such that there exists a quasi-isometric system $\{(X_\xi, T), \xi \le \eta\}$
|
||||
with $(X,T) = (X_\xi, T)$.
|
||||
Then $\eta$ is called the \vocab{order} of the flow.
|
||||
\end{definition}
|
||||
\begin{theorem}[Maximal isometric factor]
|
||||
\label{thm:maxisomfactor}
|
||||
For every flow $(X,T)$ there is a maximal factor $(Y,T)$, $\pi\colon X\to Y$,
|
||||
|
|
Loading…
Reference in a new issue