some small changes
This commit is contained in:
parent
f074e8841b
commit
14cc41cea5
3 changed files with 9 additions and 7 deletions
|
@ -40,6 +40,7 @@ We will see that not every analytic set is Borel.
|
|||
$f$ is continuous
|
||||
by the weaker assertion of $f$ being Borel.
|
||||
\todo{Copy exercise from sheet 5}
|
||||
% TODO WHY?
|
||||
\end{remark}
|
||||
|
||||
\begin{theorem}
|
||||
|
|
|
@ -1,5 +1,6 @@
|
|||
\subsection{The Lusin Separation Theorem}
|
||||
|
||||
\lecture{10}{2023-11-17}{}
|
||||
\todo{Start a new subsection here?}
|
||||
\begin{theorem}[\vocab{Lusin separation theorem}]
|
||||
\yalabel{Lusin Separation Theorem}{Lusin Separation}{thm:lusinseparation}
|
||||
Let $X$ be Polish and $A,B \subseteq X$ disjoint analytic.
|
||||
|
@ -55,7 +56,7 @@ we need the following definition:
|
|||
such that $A \cap B = \emptyset$
|
||||
Then there are continuous surjections
|
||||
$f\colon \cN \twoheadrightarrow A \subseteq X$
|
||||
and $g\colon \twoheadrightarrow B \subseteq X$.
|
||||
and $g\colon \cN \twoheadrightarrow B \subseteq X$.
|
||||
|
||||
Write $A_s \coloneqq f(\cN_s)$ and $B_s \coloneqq g(\cN_s)$.
|
||||
Note that $A_s = \bigcup_m A_{s\concat m}$
|
||||
|
@ -105,8 +106,8 @@ we need the following definition:
|
|||
Then $f(A)$ is Borel.
|
||||
\end{theorem}
|
||||
\begin{refproof}{thm:lusinsouslin}
|
||||
W.l.o.g.~suppose that $f$ is continuous
|
||||
$A$ is closed,\footnote{We might even assume that $A$ is clopen, but we only need closed.}
|
||||
W.l.o.g.~suppose that $f$ is continuous,
|
||||
$A$ is closed\footnote{We might even assume that $A$ is clopen, but we only need closed.}
|
||||
and $X = \cN$ by \yaref{thm:bairetopolish}:
|
||||
|
||||
|
||||
|
@ -139,7 +140,7 @@ we need the following definition:
|
|||
\end{itemize}
|
||||
The second point follows from injectivity of $f$
|
||||
and the fact that $\cN_{s \concat n} \cap \cN_{s\concat n'} = \emptyset$.
|
||||
In particular, the $(B_s)$ for a Lusin scheme.
|
||||
In particular, the $(B_s)$ form a Lusin scheme.
|
||||
|
||||
Note that $f(A) = \bigcup_{s \in \omega^k} B_s$
|
||||
for every $k <\omega$,
|
||||
|
|
|
@ -118,7 +118,7 @@
|
|||
Hence \yaref{thm:bsb} can be applied.
|
||||
\end{proof}
|
||||
|
||||
\subsection{Projective Hierarchy}
|
||||
\subsection{The Projective Hierarchy}
|
||||
|
||||
|
||||
% https://q.uiver.app/#q=WzAsNixbMCwxLCJcXERlbHRhXjFfMShYKSJdLFsxLDAsIlxcU2lnbWFeMV8xKFgpIl0sWzEsMiwiXFxQaV4xXzEoWCkiXSxbMiwxLCJcXERlbHRhXjFfMihYKSJdLFszLDAsIlxcU2lnbWFeMV8yKFgpIl0sWzMsMiwiXFxQaV4xXzIoWCkiXSxbMCwxLCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMCwyLCJcXHN1YnNldGVxIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMiwzLCJcXHN1YnNldGVxIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMSwzLCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMyw0LCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMyw1LCJcXHN1YnNldGVxIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XV0=
|
||||
|
@ -151,7 +151,7 @@
|
|||
We will not proof this in this lecture.
|
||||
|
||||
|
||||
\subsection{Trees} % TODO section?
|
||||
\subsection{Ill-Founded Trees}
|
||||
|
||||
|
||||
Recall that a \vocab{tree} on $\N$ is a subset of
|
||||
|
|
Loading…
Reference in a new issue