diff --git a/inputs/lecture_16.tex b/inputs/lecture_16.tex index c9ee8f7..05e5f71 100644 --- a/inputs/lecture_16.tex +++ b/inputs/lecture_16.tex @@ -207,6 +207,7 @@ A flow $\Z \acts X$ corresponds to the graph of and this graph is an element of $K(\bH^2)$. \begin{theorem}[Beleznay-Foreman] + \label{thm:beleznay-foreman} Consider $\Z$-flows. \begin{itemize} \item For any $\alpha < \omega_1$, diff --git a/inputs/lecture_17.tex b/inputs/lecture_17.tex index c7f8775..8f6f36e 100644 --- a/inputs/lecture_17.tex +++ b/inputs/lecture_17.tex @@ -173,6 +173,7 @@ However if we pick $y \in Y$, $Ty$ might not be dense. % We want to a minimal subflow in a nice way: \begin{theorem} + \label{thm:distalflowpartition} If $(X,T)$ is distal, then $X$ is the disjoint union of minimal subflows. In fact those disjoint sets will be orbits of $E(X,T)$. diff --git a/inputs/lecture_20.tex b/inputs/lecture_20.tex index 1e88b7e..bd5690f 100644 --- a/inputs/lecture_20.tex +++ b/inputs/lecture_20.tex @@ -44,9 +44,8 @@ coordinates. - - \begin{lemma} + \label{lem:lec20:1} Let $x,x' \in X$ with $\pi_n(x) = \pi_n(x')$ for some $n$. Then there is a sequence of points $x_k$ with @@ -74,7 +73,7 @@ coordinates. \] where $\beta_k$ is such that $\frac{\beta_k}{\pi}$ is irrational and $|\beta_k| < 2^{-k}$. - Fix a sequence of such $\beta_k$. + Fix a sequence'(b)). of such $\beta_k$. Then \[d(x_k,x) = 2^{-n} |e^{\i \beta_k} - 1| < 2^{-n-k} \xrightarrow{k\to \infty} 0.\] In particular $F(x_k, x) \to 0$. diff --git a/inputs/lecture_21.tex b/inputs/lecture_21.tex index 8c8a9c9..662931c 100644 --- a/inputs/lecture_21.tex +++ b/inputs/lecture_21.tex @@ -77,6 +77,7 @@ Let $X_n \coloneqq (S^1)^n$ and $X \coloneqq (S^1)^{\N}$. \begin{theorem} + \label{thm:21:xnmaxiso} $(X_n, \tau_n)$ is the maximal isometric extension of $(X_{n-1}, \tau_{n-1})$ in $(X,\tau)$. \end{theorem} diff --git a/inputs/lecture_22.tex b/inputs/lecture_22.tex new file mode 100644 index 0000000..7f54090 --- /dev/null +++ b/inputs/lecture_22.tex @@ -0,0 +1,194 @@ +\lecture{22}{2024-01-16}{} + +\begin{refproof}{thm:21:xnmaxiso} + We have the following situation: + % https://q.uiver.app/#q=WzAsNCxbMCwwLCJYIl0sWzEsMSwiWF97bn0iXSxbMSwyLCJYX3tuLTF9Il0sWzIsMSwiWSJdLFswLDEsIlxccGlfe259Il0sWzEsMiwiXFx0ZXh0e2lzb21ldHJpY30iLDFdLFswLDIsIlxccGlfe24tMX0iLDIseyJjdXJ2ZSI6Mn1dLFswLDMsIlxccGknIiwwLHsiY3VydmUiOi0zfV0sWzMsMSwiaCIsMix7InN0eWxlIjp7ImJvZHkiOnsibmFtZSI6ImRhc2hlZCJ9fX1dLFszLDIsIlxcb3ZlcmxpbmV7Z30sIFxcdGV4dHsgbWF4LiBpc29tLn0iLDAseyJjdXJ2ZSI6LTJ9XV0= + \[\begin{tikzcd} + X \\ + & {X_{n}} & Y \\ + & {X_{n-1}} + \arrow["{\pi_{n}}", from=1-1, to=2-2] + \arrow["{\text{isometric}}"{description}, from=2-2, to=3-2] + \arrow["{\pi_{n-1}}"', curve={height=12pt}, from=1-1, to=3-2] + \arrow["{\pi'}", curve={height=-18pt}, from=1-1, to=2-3] + \arrow["h"', dashed, from=2-3, to=2-2] + \arrow["{\overline{g}, \text{ max. isom.}}", curve={height=-12pt}, from=2-3, to=3-2] + \end{tikzcd}\] + + We want to show that this tower is normal, + i.e.~the isometric extensions are maximal isometric extension. + + Let $Y$ be a maximal isometric extension of $X_{n-1}$ in $X$ + and let $\overline{g} = \pi^n_{n-1} \circ h$. % factor map? + We need to show that $h$ is an isomorphism. + Towards a contradiction assume that $h$ is not an isomorphism. + Then there are $x,x' \in X$ with + $\pi'(x) \neq \pi'(x')$ but $\pi_n(x) = \pi_n(x') =t \in X_n$. + Then $h^{-1}(t) \ni \pi'(x), \pi'(x')$. + + By a \yaref{lem:lec20:1} + there is a sequence $(x_k)$ in $X$ + with $\pi_{n-1}(x_k) = \pi_{n-1}(x) = \pi_{n-1}(x')$ for all $k$, + such that $F(x_k, x) \to 0$ and $F(x_k, x') \to 0$. + + Let $\rho$ be a metric witnessing that $\overline{g}$ + is an isometric extension, + i.e.~ + $\rho$ is defined on $\bigcup_{x \in X_{n-1}} (\overline{g}^{-1}(x))^2 \overset{\text{closed}}{\subseteq} Y \times Y$, + continuous and $\rho(Ta, Tb) = \rho(a,b)$ for $\overline{g}(a) = \overline{g}(b)$. + + For $a,b \in X$ such that + \[ + \overline{g}(\pi'(a)) = \overline{g}(\pi'(b)) + \] + define + \[ + R(a,b) \coloneqq \rho(\pi'(a), \pi'(b)). + \] + + \begin{itemize} + \item For any two out of $x,x',(x_k)$, $R$ is defined. + \item $R(x,x_k) = R(\tau^m x, \tau^m x_k)$ for all $m$. + \item $F(x,x_k) \xrightarrow{k\to \infty} 0$, + so there is a sequence $(m_k)$ + such that + $d(\tau^{m_k}x, \tau^{m_k} x_k) \xrightarrow{k \to \infty} 0$. + \end{itemize} + By continuity of $\rho$, + we have that $R(x,x_k) = R(\tau^{m_k} x, \tau^{m_k} x_k) \xrightarrow{k \to \infty} 0$, + and similarly $R(x',x_k) \to 0$. + Hence $R(x,x') \xrightarrow{k \to \infty} 0$ + by the triangle inequality. + But $x$ and $x'$ don't depend on $k$, + hence $R(x,x') = 0$. + It follows that $\pi'(x) = \pi'(x')$ $\lightning$. +\end{refproof} + + +\begin{theorem}[Beleznay-Foreman] + \begin{enumerate}[(1)] + \item For every $\eta < \omega_1$, + there is a distal minimal flow + of order $\eta$.%\footnote{For second countable spaces this is the best we can get.} + \item The set of distal minimal flows + is $\Pi^1_1$-complete. + \item The order is a $\Pi^1_1$-rank. + In particular + $\{\text{distal minimal flows of rank } < \alpha\}$ + is Borel for all $\alpha < \omega_1$. + \end{enumerate} +\end{theorem} +\todo{This was already stated as \yaref{thm:beleznayforeman} in lecture 16 + and should not have two numbers.} + +A few words on the proof: +Let $\mathbb{K} = S^1$ +and $I$ a countable linear order. +Let $\mathbb{K}^I$ be the product of $|I|$ many $\mathbb{K}$, +$\mathbb{K}^{ j+1.~z_k = 1,\\ + &&d(f^{k_m}(\overline{x_m}), f^{k_m}(\overline{z})) < \epsilon \text{ and }\\ + &&d(f^{k_n}(\overline{x_n}), f^{k_n}(\overline{z})) < \epsilon + &&\} + \end{IEEEeqnarray*} + Beleznay and Foreman show that this is open and dense.% + \footnote{This is not relevant for the exam.} + % TODO similarities to the lemma used today + \end{itemize} +\end{proof} + + + diff --git a/logic3.tex b/logic3.tex index f98dd3f..a3ea118 100644 --- a/logic3.tex +++ b/logic3.tex @@ -46,6 +46,7 @@ \input{inputs/lecture_19} \input{inputs/lecture_20} \input{inputs/lecture_21} +\input{inputs/lecture_22} \cleardoublepage