small changes
This commit is contained in:
parent
8f800b4403
commit
0f4328f0d1
1 changed files with 18 additions and 5 deletions
|
@ -6,6 +6,7 @@
|
|||
we have that $\Sigma^0_\xi(X) \neq \Pi^0_\xi(X)$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
Fix $\xi < \omega_1$.
|
||||
Towards a contradiction assume $\Sigma^0_\xi(X) = \Pi^0_\xi(X)$.
|
||||
By \autoref{thm:cantoruniversal},
|
||||
|
@ -19,6 +20,10 @@
|
|||
\[z \in A \iff z \in \cU_z \iff (z,z) \in \cU.\]
|
||||
But by the definition of $A$,
|
||||
we have $z \in A \iff (z,z) \not\in \cU \lightning$.
|
||||
}{%
|
||||
Let $\cU$ be $X$-universal for $\Sigma^0_\xi(X)$.
|
||||
Consider $\{y \in X : (y,y) \not\in \cU\} \in \Pi^0_\xi(X) \setminus \Sigma^0_\xi(X)$.
|
||||
}
|
||||
\end{proof}
|
||||
|
||||
|
||||
|
@ -33,8 +38,10 @@
|
|||
f(B) = A.
|
||||
\]
|
||||
\end{definition}
|
||||
\gist{%
|
||||
Trivially, every Borel set is analytic.
|
||||
We will see that not every analytic set is Borel.
|
||||
We will see that not every analytic set is Borel.
|
||||
}{}
|
||||
\begin{remark}
|
||||
In the definition we can replace the assertion that
|
||||
$f$ is continuous
|
||||
|
@ -64,6 +71,7 @@ We will see that not every analytic set is Borel.
|
|||
\end{enumerate}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\gist{%
|
||||
To show (i) $\implies$ (ii):
|
||||
take $B \in \cB(Y')$
|
||||
and $f\colon Y' \to X$
|
||||
|
@ -73,11 +81,16 @@ We will see that not every analytic set is Borel.
|
|||
such that $B$ is clopen with respect to the new topology.
|
||||
Then let $g = f\defon{B}$
|
||||
and $Y = (B, \cT\defon{B})$.
|
||||
}{(i) $\implies$ (ii):
|
||||
Clopenize the Borel set, then restrict.
|
||||
}
|
||||
|
||||
(ii) $\implies$ (iii):
|
||||
Any Polish space is the continuous image of $\cN$.
|
||||
\gist{%
|
||||
Let $g_1: \cN \to Y$
|
||||
and $h \coloneqq g \circ g_1$.
|
||||
}{}
|
||||
|
||||
(iii) $\implies$ (iv):
|
||||
Let $h\colon \cN \to X$ with $h(\cN) = A$.
|
||||
|
|
Loading…
Reference in a new issue