small changes
This commit is contained in:
parent
8f800b4403
commit
0f4328f0d1
1 changed files with 18 additions and 5 deletions
|
@ -6,6 +6,7 @@
|
||||||
we have that $\Sigma^0_\xi(X) \neq \Pi^0_\xi(X)$.
|
we have that $\Sigma^0_\xi(X) \neq \Pi^0_\xi(X)$.
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\gist{%
|
||||||
Fix $\xi < \omega_1$.
|
Fix $\xi < \omega_1$.
|
||||||
Towards a contradiction assume $\Sigma^0_\xi(X) = \Pi^0_\xi(X)$.
|
Towards a contradiction assume $\Sigma^0_\xi(X) = \Pi^0_\xi(X)$.
|
||||||
By \autoref{thm:cantoruniversal},
|
By \autoref{thm:cantoruniversal},
|
||||||
|
@ -19,24 +20,30 @@
|
||||||
\[z \in A \iff z \in \cU_z \iff (z,z) \in \cU.\]
|
\[z \in A \iff z \in \cU_z \iff (z,z) \in \cU.\]
|
||||||
But by the definition of $A$,
|
But by the definition of $A$,
|
||||||
we have $z \in A \iff (z,z) \not\in \cU \lightning$.
|
we have $z \in A \iff (z,z) \not\in \cU \lightning$.
|
||||||
|
}{%
|
||||||
|
Let $\cU$ be $X$-universal for $\Sigma^0_\xi(X)$.
|
||||||
|
Consider $\{y \in X : (y,y) \not\in \cU\} \in \Pi^0_\xi(X) \setminus \Sigma^0_\xi(X)$.
|
||||||
|
}
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
\begin{definition}
|
\begin{definition}
|
||||||
Let $X$ be a Polish space.
|
Let $X$ be a Polish space.
|
||||||
A set $A \subseteq X$
|
A set $A \subseteq X$
|
||||||
is called \vocab{analytic}
|
is called \vocab{analytic}
|
||||||
iff
|
iff
|
||||||
\[
|
\[
|
||||||
\exists Y \text{ Polish}.~\exists B \in \cB(Y).~
|
\exists Y \text{ Polish}.~\exists B \in \cB(Y).~
|
||||||
\exists \underbrace{f\colon Y \to X}_{\text{continuous}}.~
|
\exists \underbrace{f\colon Y \to X}_{\text{continuous}}.~
|
||||||
f(B) = A.
|
f(B) = A.
|
||||||
\]
|
\]
|
||||||
\end{definition}
|
\end{definition}
|
||||||
|
\gist{%
|
||||||
Trivially, every Borel set is analytic.
|
Trivially, every Borel set is analytic.
|
||||||
We will see that not every analytic set is Borel.
|
We will see that not every analytic set is Borel.
|
||||||
|
}{}
|
||||||
\begin{remark}
|
\begin{remark}
|
||||||
In the definition we can replace the assertion that
|
In the definition we can replace the assertion that
|
||||||
$f$ is continuous
|
$f$ is continuous
|
||||||
by the weaker assertion of $f$ being Borel.
|
by the weaker assertion of $f$ being Borel.
|
||||||
\todo{Copy exercise from sheet 5}
|
\todo{Copy exercise from sheet 5}
|
||||||
|
@ -50,7 +57,7 @@ We will see that not every analytic set is Borel.
|
||||||
Then the following are equivalent:
|
Then the following are equivalent:
|
||||||
\begin{enumerate}[(i)]
|
\begin{enumerate}[(i)]
|
||||||
\item $A$ is analytic.
|
\item $A$ is analytic.
|
||||||
\item There exists a Polish space $Y$
|
\item There exists a Polish space $Y$
|
||||||
and $f\colon Y \to X$
|
and $f\colon Y \to X$
|
||||||
continuous\footnote{or Borel}
|
continuous\footnote{or Borel}
|
||||||
such that $A = f(Y)$.
|
such that $A = f(Y)$.
|
||||||
|
@ -64,6 +71,7 @@ We will see that not every analytic set is Borel.
|
||||||
\end{enumerate}
|
\end{enumerate}
|
||||||
\end{theorem}
|
\end{theorem}
|
||||||
\begin{proof}
|
\begin{proof}
|
||||||
|
\gist{%
|
||||||
To show (i) $\implies$ (ii):
|
To show (i) $\implies$ (ii):
|
||||||
take $B \in \cB(Y')$
|
take $B \in \cB(Y')$
|
||||||
and $f\colon Y' \to X$
|
and $f\colon Y' \to X$
|
||||||
|
@ -73,11 +81,16 @@ We will see that not every analytic set is Borel.
|
||||||
such that $B$ is clopen with respect to the new topology.
|
such that $B$ is clopen with respect to the new topology.
|
||||||
Then let $g = f\defon{B}$
|
Then let $g = f\defon{B}$
|
||||||
and $Y = (B, \cT\defon{B})$.
|
and $Y = (B, \cT\defon{B})$.
|
||||||
|
}{(i) $\implies$ (ii):
|
||||||
|
Clopenize the Borel set, then restrict.
|
||||||
|
}
|
||||||
|
|
||||||
(ii) $\implies$ (iii):
|
(ii) $\implies$ (iii):
|
||||||
Any Polish space is the continuous image of $\cN$.
|
Any Polish space is the continuous image of $\cN$.
|
||||||
|
\gist{%
|
||||||
Let $g_1: \cN \to Y$
|
Let $g_1: \cN \to Y$
|
||||||
and $h \coloneqq g \circ g_1$.
|
and $h \coloneqq g \circ g_1$.
|
||||||
|
}{}
|
||||||
|
|
||||||
(iii) $\implies$ (iv):
|
(iii) $\implies$ (iv):
|
||||||
Let $h\colon \cN \to X$ with $h(\cN) = A$.
|
Let $h\colon \cN \to X$ with $h(\cN) = A$.
|
||||||
|
|
Loading…
Reference in a new issue