This commit is contained in:
parent
bfcb894c89
commit
0d6d392d5d
3 changed files with 181 additions and 0 deletions
|
@ -84,6 +84,7 @@ where $X$ is a metrizable, usually second countable space.
|
|||
\end{example}
|
||||
|
||||
\begin{theorem}
|
||||
\label{thm:cantoruniversal}
|
||||
Let $X$ be a separable, metrizable space.
|
||||
Then for every $\xi \ge 1$,
|
||||
there is a $2^{\omega}$-universal
|
||||
|
@ -141,3 +142,12 @@ where $X$ is a metrizable, usually second countable space.
|
|||
% TODO
|
||||
Furthermore $\cU \in \Sigma^0_{\xi}((2^\omega)^\omega \times X)$.
|
||||
\end{proof}
|
||||
\begin{remark}
|
||||
Since $2^{\omega}$ embeds
|
||||
into any uncountable polish space $Y$
|
||||
such that the image is closed,
|
||||
we can $2^{\omega}$ by $Y$
|
||||
in the statement of the theorem.%
|
||||
\footnote{By definition of the subspace topology
|
||||
and transfinite induction, $\Sigma^0_\xi(Y)\defon{2^\omega} = \Sigma^0_\xi(2^\omega)$.}
|
||||
\end{remark}
|
||||
|
|
170
inputs/lecture_09.tex
Normal file
170
inputs/lecture_09.tex
Normal file
|
@ -0,0 +1,170 @@
|
|||
\lecture{09}{2023-11-14}{}
|
||||
|
||||
\begin{theorem}
|
||||
Let $X$ be an uncountable Polish space.
|
||||
Then for all $\xi < \omega_1$,
|
||||
we have that $\Sigma^0_\xi(X) \neq \Pi^0_\xi(X)$.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
Fix $\xi < \omega_1$.
|
||||
Towards a contradiction assume $\Sigma^0_\xi(X) = \Pi^0_\xi(X)$.
|
||||
By \autoref{thm:cantoruniversal},
|
||||
there is a $X$-universal set $\cU$ for $\Sigma^0_\xi(X)$.
|
||||
|
||||
Take $A \coloneqq \{y \in X : (y,y) \not\in \cU\}$.
|
||||
Then $A \in \Pi^0_\xi(X)$.\todo{Needs a small proof}
|
||||
By assumption $A \in \Sigma^0_\xi(X)$,
|
||||
i.e.~there exists some $z \in X$ such that $A = \cU_z$.
|
||||
We have
|
||||
\[z \in A \iff z \in \cU_z \iff (z,z) \in \cU.\]
|
||||
But by the definition of $A$,
|
||||
we have $z \in A \iff (z,z) \not\in \cU \lightning$.
|
||||
\end{proof}
|
||||
|
||||
|
||||
\begin{definition}
|
||||
Let $X$ be a Polish space.
|
||||
A set $A \subseteq X$
|
||||
is called \vocab{analytic}
|
||||
if
|
||||
\[
|
||||
\exists Y \text{ Polish}.~\exists B \in \cB(Y).~
|
||||
\exists \underbrace{f\colon Y \to X}_{\text{continuous}}.~
|
||||
f(B) = A.
|
||||
\]
|
||||
\end{definition}
|
||||
Trivially, every Borel set is analytic.
|
||||
We will see that not every analytic set is Borel.
|
||||
\begin{remark}
|
||||
In the definition we can replace the assertion that
|
||||
$f$ is continuous
|
||||
by the weaker assertion of $f$ being Borel.
|
||||
\todo{Copy exercise from sheet 5}
|
||||
\end{remark}
|
||||
|
||||
\begin{theorem}
|
||||
Let $X$ be Polish,
|
||||
$\emptyset \neq A \subseteq X$.
|
||||
Then the following are equivalent:
|
||||
\begin{enumerate}[(i)]
|
||||
\item $A$ is analytic.
|
||||
\item There exists a Polish space $Y$
|
||||
and $f\colon Y \to X$
|
||||
continuous\footnote{or Borel}
|
||||
such that $A = f(Y)$.
|
||||
\item There exists $h\colon \cN \to X$
|
||||
continuous with $h(\cN) = A$.
|
||||
\item There is $F \overset{\text{closed}}{\subseteq} X \times \cN$
|
||||
such that $A = \proj_X(F)$.
|
||||
\item There is a Borel set $B \subseteq X \times Y$
|
||||
for some Polish space $Y$,
|
||||
such that $A = \proj_X(B)$.
|
||||
\end{enumerate}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
To show (i) $\implies$ (ii):
|
||||
take $B \in \cB(Y')$
|
||||
and $f\colon Y' \to X$
|
||||
continuous with $f(B) = A$.
|
||||
Take a finer Polish topology $\cT$ on $Y'$
|
||||
adding no Borel sets,
|
||||
such that $B$ is clopen with respect to the new topology.
|
||||
Then let $g = f\defon{B}$
|
||||
and $Y = (B, \cT\defon{B})$.
|
||||
|
||||
(ii) $\implies$ (iii):
|
||||
Any Polish space is the continuous image of $\cN$.
|
||||
Let $g_1: \cN \to Y$
|
||||
and $h \coloneqq g \circ g_1$.
|
||||
|
||||
(iii) $\implies$ (iv):
|
||||
Let $h\colon \cN \to X$ with $h(\cN) = A$.
|
||||
Let $G(h) \coloneqq \{(a,b) : h(a) = b\} \overset{\text{closed}}{\subseteq} \cN \times X$
|
||||
be the \vocab{graph} of $h$.
|
||||
Take $F \coloneqq G(h)^{-1} \coloneqq \{(c,d) | (d,c) \in G(h)\}$
|
||||
|
||||
Clearly (iv) $\implies$ (v).
|
||||
|
||||
(v) $\implies$ (i):
|
||||
Take $f \coloneqq \proj_X$.
|
||||
\end{proof}
|
||||
|
||||
|
||||
\begin{theorem}
|
||||
Let $X,Y$ be Polish spaces.
|
||||
Let $f\colon X \to Y$ be \vocab{Borel}
|
||||
(i.e.~preimages of open sets are Borel).
|
||||
\begin{enumerate}[(a)]
|
||||
\item The image of an analytic set is analytic.
|
||||
\item The preimage of an analytic set is analytic.
|
||||
\item Analytic sets are closed under countable unions
|
||||
and countable intersections.
|
||||
\end{enumerate}
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
\begin{enumerate}[(a)]
|
||||
\item Let $A \subseteq X$ analytic.
|
||||
Then there exists $Z$ Polish and $g\colon Z \to X$
|
||||
continuous
|
||||
with $g(Z) = A$.
|
||||
We have that $f(A) = (f \circ g)(Z)$
|
||||
and $f \circ g$ is Borel.
|
||||
\item Let $f\colon X \to Y$ be Borel
|
||||
and $B \subseteq Y$ analytic.
|
||||
|
||||
Take $Z$ Polish
|
||||
and $B_0 \subseteq Y \times Z$
|
||||
such that $\proj_Y(B_0) = B$.
|
||||
Take $f^+\colon X \times Z \to Y \times Z, f^+ = f \times \id$.
|
||||
Then
|
||||
\[f^{-1}(B) = \underbrace{\proj_X(\overbrace{(\underbrace{f^+}_{\mathclap{\text{Borel}}})^{-1}(\underbrace{B_0}_{\mathclap{\text{Borel}}})}^{\text{Borel}})}_{\text{analytic}}.\]
|
||||
\item \todo{Exercise}
|
||||
\end{enumerate}
|
||||
\end{proof}
|
||||
|
||||
\begin{notation}
|
||||
Let $X$ be Polish.
|
||||
Let $\Sigma^1_1(X)$ denote the set of all analytic
|
||||
subsets of $X$.
|
||||
$\Pi^1_1(X) \coloneqq \{B \subseteq X : X \setminus B \in \Sigma^1_1(X)\}$
|
||||
is the set of \vocab{coanalytic} sets.
|
||||
\end{notation}
|
||||
We will see later that $\Sigma^1_1(X) \cap \Pi^1_1(X) = \cB(X)$.
|
||||
|
||||
|
||||
\begin{theorem}
|
||||
Let $X,Y$ be uncountable Polish spaces.
|
||||
There exists a $Y$-universal $\Sigma^1_1(X)$ set.
|
||||
\end{theorem}
|
||||
\begin{proof}
|
||||
Take $\cU \subseteq Y \times X \times \cN$
|
||||
which is $Y$-universal for $\Pi^0_1(X \times \cN)$.
|
||||
Let $\cV \coloneqq \proj_{Y \times Y}(\cU)$.
|
||||
Then $\cV$ is $Y$-universal for $\Sigma^1_1(X)$:
|
||||
\begin{itemize}
|
||||
\item $\cV \in \Sigma^1_1(Y \times X)$
|
||||
since $\cV$ is a projection of a closed set.
|
||||
\item All sections of $\cV$ are analytic.
|
||||
Let $A \in \Sigma^1_1(X)$.
|
||||
Let $C \subseteq X \times \cN$
|
||||
be closed such that $\proj_X(C) = A$.
|
||||
There is $y \in Y$
|
||||
such that $\cU_y = C$,
|
||||
hence $\cV_y = A$.
|
||||
\end{itemize}
|
||||
\end{proof}
|
||||
\begin{remark}
|
||||
In the same way that we proved
|
||||
$\Sigma^0_\xi(X) \neq \Pi^0_\xi(X)$ for $\xi < \omega_1$,
|
||||
we obtain that $\Sigma^1_1(X) \neq \Pi^1_1(X)$.
|
||||
|
||||
In fact if $\cU$ is universal for $\Sigma^1_1(X)$,
|
||||
then $\{y : (y,y) \in \cU\} \in \Sigma^1_1(X) \setminus \Pi^1_1(X)$.
|
||||
In particular, this set is not Borel.
|
||||
\end{remark}
|
||||
|
||||
|
||||
\begin{remark}+
|
||||
Showing that there exist sets that don't have the Baire property
|
||||
requires the axiom of choice.\todo{Copy exercise from sheet 5}
|
||||
\end{remark}
|
|
@ -32,6 +32,7 @@
|
|||
\input{inputs/lecture_06}
|
||||
\input{inputs/lecture_07}
|
||||
\input{inputs/lecture_08}
|
||||
\input{inputs/lecture_09}
|
||||
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue