w23-logic-3/inputs/tutorial_05.tex

36 lines
701 B
TeX
Raw Normal View History

2023-11-21 12:34:38 +01:00
\tutorial{05}{}{}
% Sheet 5 - 18.5 / 20
\subsection{Exercise 1}
Let $B \subseteq C$ be comeager.
Then $B = B_1 \cup B_2$,
where $B_1$ is dense $G_\delta$
and $B_2$ is meager.
\begin{fact}
$X$ is Baire iff every non-empty open set is non-meager.
In particular, let $X$ be Baire,
then $U \overset{\text{open}}{\subseteq} X$
is Baire.
\end{fact}
2023-11-21 13:25:01 +01:00
\subsection{Exercise 4}
\begin{enumerate}[(i)]
\item $|B| = \fc$, since $B$ contains a comeager
$G_\delta$ set, $B'$:
$B'$ is Polish,
hence $B' = P \cup C$
for $P$ perfect and $C$ countable,
and $|P| \in \{\fc, 0\}$.
But $B'$ can't contain isolated point$.
\end{enumerate}
2023-11-21 12:34:38 +01:00