w23-logic-3/inputs/lecture_17.tex

271 lines
8.4 KiB
TeX
Raw Normal View History

2023-12-12 12:10:37 +01:00
\subsection{The Ellis semigroup}
2024-01-04 19:26:34 +01:00
\lecture{17}{2023-12-12}{The Ellis semigroup}
2023-12-12 12:10:37 +01:00
Let $(X, d)$ be a compact metric space
and $(X, T)$ a flow.
Let $X^{X} \coloneqq \{f\colon X \to X\}$
be the set of all functions.\footnote{We take all the functions,
they need not be continuous.}
We equip this with the product topology,
i.e.~a subbasis
is given by sets
\[
U_{\epsilon}(x,y) \coloneqq \{f \in X^X : d(x,f(y)) < \epsilon\}.
\]
for all $x,y \in X$, $\epsilon > 0$.
2024-02-05 20:30:13 +01:00
$X^{X}$ is a compact Hausdorff space.\footnote{cf.~\href{https://en.wikipedia.org/wiki/Tychonoff's_theorem}{Tychonoff's theorem}}
2024-02-04 01:13:14 +01:00
\begin{remark}%
\footnote{cf.~\yaref{s11e1}}
2023-12-12 12:10:37 +01:00
Let $f_0 \in X^X$ be fixed.
\begin{itemize}
\item $X^X \ni f \mapsto f \circ f_0$
is continuous:
2024-01-05 17:43:25 +01:00
Consider $\{f : f \circ f_0 \in U_{\epsilon}(x,y)\}$.
2024-02-05 02:14:32 +01:00
We have $f \circ f_0 \in U_{\epsilon}(x,y)$
2023-12-12 12:10:37 +01:00
iff $f \in U_\epsilon(x,f_0(y))$.
\item Fix $x_0 \in X$.
2024-01-04 19:26:34 +01:00
Then $f \mapsto f(x_0)$ is continuous.
2023-12-12 12:10:37 +01:00
\item In general $f \mapsto f_0 \circ f$ is not continuous,
but if $f_0$ is continuous, then the map is continuous.
\end{itemize}
\end{remark}
\begin{definition}
2024-02-05 20:30:13 +01:00
\gist{%
Let $(X,T)$ be a flow.
Then the \vocab{Ellis semigroup}
is defined by
$E(X,T) \coloneqq \overline{T} \subseteq X^X$,
i.e.~identify $t \in T$ with $x \mapsto tx$
and take the closure in $X^X$.
}{%
The \vocab{Ellis semigroup} of a flow $(X,T)$
is $E(X,T) \coloneqq \overline{T} \subseteq X^X$.
}
2023-12-12 12:10:37 +01:00
\end{definition}
$E(X,T)$ is compact and Hausdorff,
since $X^X$ has these properties.
2024-02-05 02:14:32 +01:00
\gist{
Properties of $(X,T)$ translate to properties of $E(X,T)$:
\begin{goal}
We want to show that if $(X,T)$ is distal,
then $E(X,T)$ is a group.
\end{goal}
}{}
2023-12-12 12:10:37 +01:00
\begin{proposition}
2024-01-04 19:26:34 +01:00
$E(X,T)$ is a semigroup,
2023-12-12 12:10:37 +01:00
i.e.~closed under composition.
\end{proposition}
\begin{proof}
2024-02-05 20:30:13 +01:00
\gist{
2024-01-04 19:26:34 +01:00
Let $G \coloneqq E(X,T)$.
2023-12-12 12:10:37 +01:00
Take $t \in T$. We want to show that $tG \subseteq G$,
i.e.~for all $h \in G$ we have $th \in G$.
2024-02-05 20:30:13 +01:00
We have that $t^{-1}G$ is compact,
since $t^{-1}$ is continuous
and $G$ is compact.
2023-12-12 12:10:37 +01:00
2024-02-05 02:14:32 +01:00
It is $T \subseteq t^{-1}G$ since $T \ni s = t^{-1}\underbrace{(ts)}_{\in G}$.
2023-12-12 12:10:37 +01:00
So $G = \overline{T} \subseteq t^{-1}G$.
Hence $tG \subseteq G$.
\begin{claim}
If $g \in G$, then
\[
\overline{T} g = \overline{Tg}.
\]
\end{claim}
\begin{subproof}
2024-02-04 13:38:53 +01:00
Cf.~\yaref{s11e1}
2023-12-12 12:10:37 +01:00
\end{subproof}
Let $g \in G$.
We need to show that $Gg \subseteq G$.
It is
\[
Gg = \overline{T}g = \overline{Tg}.
\]
Since $G$ compact,
and $Tg \subseteq G$,
we have $ \overline{Tg} \subseteq G$.
2024-02-05 20:30:13 +01:00
}{
$G \coloneqq E(X,T)$.
\begin{itemize}
\item $\forall t \in T. ~ tG \subseteq G$:
\begin{itemize}
\item $t^{-1}G$ is compact.
\item $T \subseteq t^{-1}G$,
\item $\leadsto G = \overline{T} \subseteq t^{-1}G$,
i.e.~$tG \subseteq G$.
\end{itemize}
\item $\forall g \in G.~\overline{T}g = \overline{Tg}$ (cts.~map from compact to Hausdorff)
\item $\forall g \in G.~Gg \subseteq G$ :
$Gg = \overline{T}g = \overline{Tg} \overset{G \text{ compact}, Tg \subseteq G}{\subseteq} G$.
\end{itemize}
}
2023-12-12 12:10:37 +01:00
\end{proof}
\begin{definition}
A \vocab{compact semigroup} $S$
2024-02-05 02:14:32 +01:00
is a nonempty semigroup\footnote{may not contain inverses or the identity}
with a compact Hausdorff topology,
2023-12-12 12:10:37 +01:00
such that $S \ni x \mapsto xs$ is continuous for all $s$.
\end{definition}
2024-02-05 20:30:13 +01:00
\gist{
2023-12-12 12:10:37 +01:00
\begin{example}
2024-01-04 19:26:34 +01:00
The Ellis semigroup is a compact semigroup.
2023-12-12 12:10:37 +01:00
\end{example}
2024-02-05 20:30:13 +01:00
}{}
2023-12-12 12:10:37 +01:00
\begin{lemma}[EllisNumakura]
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
2024-02-07 02:05:20 +01:00
Every non-empty compact semigroup
2023-12-12 12:10:37 +01:00
contains an \vocab{idempotent} element,
i.e.~$f$ such that $f^2 = f$.
\end{lemma}
\begin{proof}
2024-02-05 20:30:13 +01:00
\gist{
2023-12-12 12:10:37 +01:00
Using Zorn's lemma, take a $\subseteq$-minimal
compact subsemigroup $R$ of $S$
and let $s \in R$.
Then $Rs$ is also a compact subsemigroup
and $Rs \subseteq R$.
By minimality of $R$, $R = Rs$.
Let $P \coloneqq \{ x \in R : xs = s\}$.
Then $P \neq \emptyset$,
since $s \in Rs$
and $P$ is a compact semigroup,
since $x \overset{\alpha}\mapsto xs$
2024-01-30 11:55:30 +01:00
is continuous and $P = \alpha^{-1}(s) \cap R$.
2023-12-12 12:10:37 +01:00
Thus $P = R$ by minimality,
so $s \in P$,
i.e.~$s^2 = s$.
2024-02-05 20:30:13 +01:00
}{
\begin{itemize}
\item Take $R \subseteq S$ minimal compact subsemigroup (Zorn),
$s \in R$.
\item $Rs \subseteq R \implies Rs = R$.
\item $P \coloneqq \{x \in R : xs = s\}$:
\begin{itemize}
\item $P \neq \emptyset$, since $s \in Rs$
\item $P$ compact, since $P = \alpha^{-1}(s) \cap R$,
$\alpha: x \mapsto xs$ cts.
\item $P = R \implies s^2 = s$.
\end{itemize}
\end{itemize}%
}
2023-12-12 12:10:37 +01:00
\end{proof}
2024-02-05 20:30:13 +01:00
\gist{
The \yaref{lem:ellisnumakura} is not very interesting for $E(X,T)$,
since we already know that it has an identity.
%in fact we might have chosen $R = \{1\}$ in the proof.
But it is interesting for other semigroups.
}{}
2023-12-12 12:10:37 +01:00
\begin{theorem}[Ellis]
$(X,T)$ is distal iff $E(X,T)$ is a group.
\end{theorem}
\begin{proof}
2024-02-05 20:30:13 +01:00
Let $G \coloneqq E(X,T)$ and let $d$ be a metric on $X$.
\gist{
2024-02-07 16:04:28 +01:00
For all $g \in G$ we need to show that $x \mapsto gx$ is injective.
2023-12-12 12:10:37 +01:00
If we had $gx = gy$, then $d(gx,gy) = 0$.
2024-02-05 20:30:13 +01:00
Then $\inf_{t \in T} d(tx,ty) = 0$, but the flow is distal,
2023-12-12 12:10:37 +01:00
hence $x = y$.
Let $g \in G$. Consider the compact semigroup $\Gamma \coloneqq Gg$.
By the \yaref{lem:ellisnumakura},
there is $f \in \Gamma$ such that $f^2 = f$,
i.e.~for all $x \in X$ we have $f^2(x) = f(x)$.
Since $f$ is injective, we get that $x = f(x)$,
i.e.~$f = \id$.
2024-02-05 23:36:57 +01:00
Since $f \in Gg$, there exists $g' \in G$ such that $f = g' \circ g$.
2023-12-12 12:10:37 +01:00
It is $g' = g'gg'$,
so $\forall x .~g'(x) = g'(g g'(x))$.
2024-02-07 16:04:28 +01:00
Hence $g'$ is injective
2023-12-12 12:10:37 +01:00
and $x = gg'(x)$,
i.e.~$g g' = \id$.
2024-02-05 20:30:13 +01:00
}{
\begin{itemize}
\item $x \mapsto gx$ injective for all $g \in G$:
\[gx = gy
\implies d(gx,gy) = 0
\implies \inf_{t \in T} d(tx, ty) = 0
\overset{\text{distal}}{\implies} x = y.
\]
\item Fix $g \in G$.
\begin{itemize}
\item $\Gamma \coloneqq Gg$ is a compact semigroup.
\item $\exists f\in \Gamma.~f^2 = f$ (\yaref{lem:ellisnumakura})
\item $f$ is injective, hence $f = \id$.
\item Take $g'$ such that $g'g = f$. $g'gg' = g' \implies gg' = \id$.
\end{itemize}
\end{itemize}
}
2023-12-12 12:10:37 +01:00
2024-02-05 20:30:13 +01:00
\gist{
On the other hand if $(x_0,x_1)$ is proximal,
then there exists $g \in G$ such that $gx_0 = gx_1$.%
\footnote{cf.~\yaref{s11e1} (e)}
It follows that an inverse to $g$ can not exist.
}{If $(x_0,x_1)$ is proximal, there is $g \in G$ with $gx_0 = gx_1$, i.e.~no inverse to $g$.}
2023-12-12 12:10:37 +01:00
\end{proof}
2024-02-05 20:30:13 +01:00
% Let $(X,T)$ be a flow.
% Then by Zorn's lemma, there exists $X_0 \subseteq X$
% such that $(X_0, T)$ is minimal.
% In particular,
% for $x \in X$ and $\overline{Tx} = Y$
% we have that $(Y,T)$ is a flow.
% However if we pick $y \in Y$, $Ty$ might not be dense.
2024-01-29 19:19:13 +01:00
% TODO: question!
2023-12-12 12:10:37 +01:00
% TODO: think about this!
% We want to a minimal subflow in a nice way:
\begin{theorem}
2024-01-16 12:04:17 +01:00
\label{thm:distalflowpartition}
2023-12-12 12:10:37 +01:00
If $(X,T)$ is distal, then $X$ is the disjoint union of minimal subflows.
In fact those disjoint sets
will be orbits of $E(X,T)$.
\end{theorem}
\begin{proof}
Let $G = E(X,T)$.
2024-02-05 20:30:13 +01:00
\gist{
2023-12-12 12:10:37 +01:00
Note that for all $x \in X$,
2024-01-04 19:26:34 +01:00
we have that $Gx \subseteq X$ is compact
2023-12-12 12:10:37 +01:00
and invariant under the action of $G$.
2024-01-04 19:26:34 +01:00
Since $G$ is a group, the orbits partition $X$.%
2023-12-12 12:10:37 +01:00
\footnote{Note that in general this does not hold for semigroups.}
2024-02-05 20:30:13 +01:00
We need to show that $(Gx, T)$ is minimal.
Suppose that $y \in Gx$, i.e.~$Gx = Gy$.
Since $g \mapsto gy$ is continuous,
we have $Gx = Gy = \overline{T}y = \overline{Ty}$,
so $Ty$ is dense in $Gx$.
}{
\begin{itemize}
\item $G$ is a group, so the $G$-orbits partition $X$.
\item Let $y \in Gx$, then $Gx \overset{y \in Gx}{=} Gy \overset{\text{def}}{=} \overline{T}y \overset{g \mapsto gy \text{ cts.}}{=} \overline{Ty}$,
i.e.~$(Gx,T)$ is minimal.
\end{itemize}
}
2023-12-12 12:10:37 +01:00
\end{proof}
\begin{corollary}
If $(X,T)$ is distal and minimal,
then $E(X,T) \acts X$ is transitive.
\end{corollary}