2023-12-12 12:10:37 +01:00
|
|
|
|
\subsection{The Ellis semigroup}
|
2024-01-04 19:26:34 +01:00
|
|
|
|
\lecture{17}{2023-12-12}{The Ellis semigroup}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
|
|
|
|
|
Let $(X, d)$ be a compact metric space
|
|
|
|
|
and $(X, T)$ a flow.
|
|
|
|
|
|
|
|
|
|
Let $X^{X} \coloneqq \{f\colon X \to X\}$
|
|
|
|
|
be the set of all functions.\footnote{We take all the functions,
|
|
|
|
|
they need not be continuous.}
|
|
|
|
|
We equip this with the product topology,
|
|
|
|
|
i.e.~a subbasis
|
|
|
|
|
is given by sets
|
|
|
|
|
\[
|
|
|
|
|
U_{\epsilon}(x,y) \coloneqq \{f \in X^X : d(x,f(y)) < \epsilon\}.
|
|
|
|
|
\]
|
|
|
|
|
for all $x,y \in X$, $\epsilon > 0$.
|
|
|
|
|
|
2024-02-05 20:30:13 +01:00
|
|
|
|
$X^{X}$ is a compact Hausdorff space.\footnote{cf.~\href{https://en.wikipedia.org/wiki/Tychonoff's_theorem}{Tychonoff's theorem}}
|
2024-02-04 01:13:14 +01:00
|
|
|
|
\begin{remark}%
|
|
|
|
|
\footnote{cf.~\yaref{s11e1}}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
Let $f_0 \in X^X$ be fixed.
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item $X^X \ni f \mapsto f \circ f_0$
|
|
|
|
|
is continuous:
|
|
|
|
|
|
2024-01-05 17:43:25 +01:00
|
|
|
|
Consider $\{f : f \circ f_0 \in U_{\epsilon}(x,y)\}$.
|
2024-02-05 02:14:32 +01:00
|
|
|
|
We have $f \circ f_0 \in U_{\epsilon}(x,y)$
|
2023-12-12 12:10:37 +01:00
|
|
|
|
iff $f \in U_\epsilon(x,f_0(y))$.
|
|
|
|
|
\item Fix $x_0 \in X$.
|
2024-01-04 19:26:34 +01:00
|
|
|
|
Then $f \mapsto f(x_0)$ is continuous.
|
2023-12-12 12:10:37 +01:00
|
|
|
|
\item In general $f \mapsto f_0 \circ f$ is not continuous,
|
|
|
|
|
but if $f_0$ is continuous, then the map is continuous.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
\end{remark}
|
|
|
|
|
|
|
|
|
|
\begin{definition}
|
2024-02-05 20:30:13 +01:00
|
|
|
|
\gist{%
|
|
|
|
|
Let $(X,T)$ be a flow.
|
|
|
|
|
Then the \vocab{Ellis semigroup}
|
|
|
|
|
is defined by
|
|
|
|
|
$E(X,T) \coloneqq \overline{T} \subseteq X^X$,
|
|
|
|
|
i.e.~identify $t \in T$ with $x \mapsto tx$
|
|
|
|
|
and take the closure in $X^X$.
|
|
|
|
|
}{%
|
|
|
|
|
The \vocab{Ellis semigroup} of a flow $(X,T)$
|
|
|
|
|
is $E(X,T) \coloneqq \overline{T} \subseteq X^X$.
|
|
|
|
|
}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
\end{definition}
|
|
|
|
|
$E(X,T)$ is compact and Hausdorff,
|
|
|
|
|
since $X^X$ has these properties.
|
|
|
|
|
|
2024-02-05 02:14:32 +01:00
|
|
|
|
\gist{
|
|
|
|
|
Properties of $(X,T)$ translate to properties of $E(X,T)$:
|
|
|
|
|
\begin{goal}
|
|
|
|
|
We want to show that if $(X,T)$ is distal,
|
|
|
|
|
then $E(X,T)$ is a group.
|
|
|
|
|
\end{goal}
|
|
|
|
|
}{}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
|
|
|
|
|
\begin{proposition}
|
2024-01-04 19:26:34 +01:00
|
|
|
|
$E(X,T)$ is a semigroup,
|
2023-12-12 12:10:37 +01:00
|
|
|
|
i.e.~closed under composition.
|
|
|
|
|
\end{proposition}
|
|
|
|
|
\begin{proof}
|
2024-02-05 20:30:13 +01:00
|
|
|
|
\gist{
|
2024-01-04 19:26:34 +01:00
|
|
|
|
Let $G \coloneqq E(X,T)$.
|
2023-12-12 12:10:37 +01:00
|
|
|
|
Take $t \in T$. We want to show that $tG \subseteq G$,
|
|
|
|
|
i.e.~for all $h \in G$ we have $th \in G$.
|
|
|
|
|
|
2024-02-05 20:30:13 +01:00
|
|
|
|
We have that $t^{-1}G$ is compact,
|
|
|
|
|
since $t^{-1}$ is continuous
|
|
|
|
|
and $G$ is compact.
|
2023-12-12 12:10:37 +01:00
|
|
|
|
|
2024-02-05 02:14:32 +01:00
|
|
|
|
It is $T \subseteq t^{-1}G$ since $T \ni s = t^{-1}\underbrace{(ts)}_{\in G}$.
|
|
|
|
|
|
2023-12-12 12:10:37 +01:00
|
|
|
|
So $G = \overline{T} \subseteq t^{-1}G$.
|
|
|
|
|
Hence $tG \subseteq G$.
|
|
|
|
|
|
|
|
|
|
\begin{claim}
|
|
|
|
|
If $g \in G$, then
|
|
|
|
|
\[
|
|
|
|
|
\overline{T} g = \overline{Tg}.
|
|
|
|
|
\]
|
|
|
|
|
\end{claim}
|
|
|
|
|
\begin{subproof}
|
2024-02-04 13:38:53 +01:00
|
|
|
|
Cf.~\yaref{s11e1}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
\end{subproof}
|
|
|
|
|
|
|
|
|
|
Let $g \in G$.
|
|
|
|
|
We need to show that $Gg \subseteq G$.
|
|
|
|
|
|
|
|
|
|
It is
|
|
|
|
|
\[
|
|
|
|
|
Gg = \overline{T}g = \overline{Tg}.
|
|
|
|
|
\]
|
|
|
|
|
Since $G$ compact,
|
|
|
|
|
and $Tg \subseteq G$,
|
|
|
|
|
we have $ \overline{Tg} \subseteq G$.
|
2024-02-05 20:30:13 +01:00
|
|
|
|
}{
|
|
|
|
|
$G \coloneqq E(X,T)$.
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item $\forall t \in T. ~ tG \subseteq G$:
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item $t^{-1}G$ is compact.
|
|
|
|
|
\item $T \subseteq t^{-1}G$,
|
|
|
|
|
\item $\leadsto G = \overline{T} \subseteq t^{-1}G$,
|
|
|
|
|
i.e.~$tG \subseteq G$.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
\item $\forall g \in G.~\overline{T}g = \overline{Tg}$ (cts.~map from compact to Hausdorff)
|
|
|
|
|
\item $\forall g \in G.~Gg \subseteq G$ :
|
|
|
|
|
$Gg = \overline{T}g = \overline{Tg} \overset{G \text{ compact}, Tg \subseteq G}{\subseteq} G$.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
|
A \vocab{compact semigroup} $S$
|
2024-02-05 02:14:32 +01:00
|
|
|
|
is a nonempty semigroup\footnote{may not contain inverses or the identity}
|
|
|
|
|
with a compact Hausdorff topology,
|
2023-12-12 12:10:37 +01:00
|
|
|
|
such that $S \ni x \mapsto xs$ is continuous for all $s$.
|
|
|
|
|
\end{definition}
|
2024-02-05 20:30:13 +01:00
|
|
|
|
\gist{
|
2023-12-12 12:10:37 +01:00
|
|
|
|
\begin{example}
|
2024-01-04 19:26:34 +01:00
|
|
|
|
The Ellis semigroup is a compact semigroup.
|
2023-12-12 12:10:37 +01:00
|
|
|
|
\end{example}
|
2024-02-05 20:30:13 +01:00
|
|
|
|
}{}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
|
|
|
|
|
\begin{lemma}[Ellis–Numakura]
|
|
|
|
|
\yalabel{Ellis-Numakura Lemma}{Ellis-Numakura}{lem:ellisnumakura}
|
2024-02-07 02:05:20 +01:00
|
|
|
|
Every non-empty compact semigroup
|
2023-12-12 12:10:37 +01:00
|
|
|
|
contains an \vocab{idempotent} element,
|
|
|
|
|
i.e.~$f$ such that $f^2 = f$.
|
|
|
|
|
\end{lemma}
|
|
|
|
|
\begin{proof}
|
2024-02-05 20:30:13 +01:00
|
|
|
|
\gist{
|
2023-12-12 12:10:37 +01:00
|
|
|
|
Using Zorn's lemma, take a $\subseteq$-minimal
|
|
|
|
|
compact subsemigroup $R$ of $S$
|
|
|
|
|
and let $s \in R$.
|
|
|
|
|
|
|
|
|
|
Then $Rs$ is also a compact subsemigroup
|
|
|
|
|
and $Rs \subseteq R$.
|
|
|
|
|
By minimality of $R$, $R = Rs$.
|
|
|
|
|
Let $P \coloneqq \{ x \in R : xs = s\}$.
|
|
|
|
|
Then $P \neq \emptyset$,
|
|
|
|
|
since $s \in Rs$
|
|
|
|
|
and $P$ is a compact semigroup,
|
|
|
|
|
since $x \overset{\alpha}\mapsto xs$
|
2024-01-30 11:55:30 +01:00
|
|
|
|
is continuous and $P = \alpha^{-1}(s) \cap R$.
|
2023-12-12 12:10:37 +01:00
|
|
|
|
Thus $P = R$ by minimality,
|
|
|
|
|
so $s \in P$,
|
|
|
|
|
i.e.~$s^2 = s$.
|
2024-02-05 20:30:13 +01:00
|
|
|
|
}{
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item Take $R \subseteq S$ minimal compact subsemigroup (Zorn),
|
|
|
|
|
$s \in R$.
|
|
|
|
|
\item $Rs \subseteq R \implies Rs = R$.
|
|
|
|
|
\item $P \coloneqq \{x \in R : xs = s\}$:
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item $P \neq \emptyset$, since $s \in Rs$
|
|
|
|
|
\item $P$ compact, since $P = \alpha^{-1}(s) \cap R$,
|
|
|
|
|
$\alpha: x \mapsto xs$ cts.
|
|
|
|
|
\item $P = R \implies s^2 = s$.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
\end{itemize}%
|
|
|
|
|
}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
\end{proof}
|
|
|
|
|
|
2024-02-05 20:30:13 +01:00
|
|
|
|
\gist{
|
|
|
|
|
The \yaref{lem:ellisnumakura} is not very interesting for $E(X,T)$,
|
|
|
|
|
since we already know that it has an identity.
|
|
|
|
|
%in fact we might have chosen $R = \{1\}$ in the proof.
|
|
|
|
|
But it is interesting for other semigroups.
|
|
|
|
|
}{}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\begin{theorem}[Ellis]
|
|
|
|
|
$(X,T)$ is distal iff $E(X,T)$ is a group.
|
|
|
|
|
\end{theorem}
|
|
|
|
|
\begin{proof}
|
2024-02-05 20:30:13 +01:00
|
|
|
|
Let $G \coloneqq E(X,T)$ and let $d$ be a metric on $X$.
|
|
|
|
|
\gist{
|
2024-02-07 16:04:28 +01:00
|
|
|
|
For all $g \in G$ we need to show that $x \mapsto gx$ is injective.
|
2023-12-12 12:10:37 +01:00
|
|
|
|
If we had $gx = gy$, then $d(gx,gy) = 0$.
|
2024-02-05 20:30:13 +01:00
|
|
|
|
Then $\inf_{t \in T} d(tx,ty) = 0$, but the flow is distal,
|
2023-12-12 12:10:37 +01:00
|
|
|
|
hence $x = y$.
|
|
|
|
|
|
|
|
|
|
Let $g \in G$. Consider the compact semigroup $\Gamma \coloneqq Gg$.
|
|
|
|
|
By the \yaref{lem:ellisnumakura},
|
|
|
|
|
there is $f \in \Gamma$ such that $f^2 = f$,
|
|
|
|
|
i.e.~for all $x \in X$ we have $f^2(x) = f(x)$.
|
|
|
|
|
Since $f$ is injective, we get that $x = f(x)$,
|
|
|
|
|
i.e.~$f = \id$.
|
|
|
|
|
|
2024-02-05 23:36:57 +01:00
|
|
|
|
Since $f \in Gg$, there exists $g' \in G$ such that $f = g' \circ g$.
|
2023-12-12 12:10:37 +01:00
|
|
|
|
|
|
|
|
|
It is $g' = g'gg'$,
|
|
|
|
|
so $\forall x .~g'(x) = g'(g g'(x))$.
|
2024-02-07 16:04:28 +01:00
|
|
|
|
Hence $g'$ is injective
|
2023-12-12 12:10:37 +01:00
|
|
|
|
and $x = gg'(x)$,
|
|
|
|
|
i.e.~$g g' = \id$.
|
2024-02-05 20:30:13 +01:00
|
|
|
|
}{
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item $x \mapsto gx$ injective for all $g \in G$:
|
|
|
|
|
\[gx = gy
|
|
|
|
|
\implies d(gx,gy) = 0
|
|
|
|
|
\implies \inf_{t \in T} d(tx, ty) = 0
|
|
|
|
|
\overset{\text{distal}}{\implies} x = y.
|
|
|
|
|
\]
|
|
|
|
|
\item Fix $g \in G$.
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item $\Gamma \coloneqq Gg$ is a compact semigroup.
|
|
|
|
|
\item $\exists f\in \Gamma.~f^2 = f$ (\yaref{lem:ellisnumakura})
|
|
|
|
|
\item $f$ is injective, hence $f = \id$.
|
|
|
|
|
\item Take $g'$ such that $g'g = f$. $g'gg' = g' \implies gg' = \id$.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
\end{itemize}
|
|
|
|
|
}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
|
2024-02-05 20:30:13 +01:00
|
|
|
|
\gist{
|
|
|
|
|
On the other hand if $(x_0,x_1)$ is proximal,
|
|
|
|
|
then there exists $g \in G$ such that $gx_0 = gx_1$.%
|
|
|
|
|
\footnote{cf.~\yaref{s11e1} (e)}
|
|
|
|
|
It follows that an inverse to $g$ can not exist.
|
|
|
|
|
}{If $(x_0,x_1)$ is proximal, there is $g \in G$ with $gx_0 = gx_1$, i.e.~no inverse to $g$.}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
\end{proof}
|
|
|
|
|
|
2024-02-05 20:30:13 +01:00
|
|
|
|
% Let $(X,T)$ be a flow.
|
|
|
|
|
% Then by Zorn's lemma, there exists $X_0 \subseteq X$
|
|
|
|
|
% such that $(X_0, T)$ is minimal.
|
|
|
|
|
% In particular,
|
|
|
|
|
% for $x \in X$ and $\overline{Tx} = Y$
|
|
|
|
|
% we have that $(Y,T)$ is a flow.
|
|
|
|
|
% However if we pick $y \in Y$, $Ty$ might not be dense.
|
2024-01-29 19:19:13 +01:00
|
|
|
|
% TODO: question!
|
2023-12-12 12:10:37 +01:00
|
|
|
|
% TODO: think about this!
|
|
|
|
|
% We want to a minimal subflow in a nice way:
|
|
|
|
|
|
|
|
|
|
\begin{theorem}
|
2024-01-16 12:04:17 +01:00
|
|
|
|
\label{thm:distalflowpartition}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
If $(X,T)$ is distal, then $X$ is the disjoint union of minimal subflows.
|
|
|
|
|
In fact those disjoint sets
|
|
|
|
|
will be orbits of $E(X,T)$.
|
|
|
|
|
\end{theorem}
|
|
|
|
|
\begin{proof}
|
|
|
|
|
Let $G = E(X,T)$.
|
2024-02-05 20:30:13 +01:00
|
|
|
|
\gist{
|
2023-12-12 12:10:37 +01:00
|
|
|
|
Note that for all $x \in X$,
|
2024-01-04 19:26:34 +01:00
|
|
|
|
we have that $Gx \subseteq X$ is compact
|
2023-12-12 12:10:37 +01:00
|
|
|
|
and invariant under the action of $G$.
|
|
|
|
|
|
2024-01-04 19:26:34 +01:00
|
|
|
|
Since $G$ is a group, the orbits partition $X$.%
|
2023-12-12 12:10:37 +01:00
|
|
|
|
\footnote{Note that in general this does not hold for semigroups.}
|
|
|
|
|
|
2024-02-05 20:30:13 +01:00
|
|
|
|
We need to show that $(Gx, T)$ is minimal.
|
|
|
|
|
Suppose that $y \in Gx$, i.e.~$Gx = Gy$.
|
|
|
|
|
Since $g \mapsto gy$ is continuous,
|
|
|
|
|
we have $Gx = Gy = \overline{T}y = \overline{Ty}$,
|
|
|
|
|
so $Ty$ is dense in $Gx$.
|
|
|
|
|
}{
|
|
|
|
|
\begin{itemize}
|
|
|
|
|
\item $G$ is a group, so the $G$-orbits partition $X$.
|
|
|
|
|
\item Let $y \in Gx$, then $Gx \overset{y \in Gx}{=} Gy \overset{\text{def}}{=} \overline{T}y \overset{g \mapsto gy \text{ cts.}}{=} \overline{Ty}$,
|
|
|
|
|
i.e.~$(Gx,T)$ is minimal.
|
|
|
|
|
\end{itemize}
|
|
|
|
|
}
|
2023-12-12 12:10:37 +01:00
|
|
|
|
\end{proof}
|
|
|
|
|
\begin{corollary}
|
|
|
|
|
If $(X,T)$ is distal and minimal,
|
|
|
|
|
then $E(X,T) \acts X$ is transitive.
|
|
|
|
|
\end{corollary}
|