\delta^{-1}(D \cap\left( X \times X \times\ldots\times U \times\ldots) \right)) = U \in\cT_i \subseteq\cT_\infty,
\]
hence $\delta$ is continuous.
Let $U \in\cT_\infty$.
Then $U$ is the union of sets of the form
\[
V = U_{n_1}\cap U_{n_2}\cap\ldots\cap U_{nu}
\]
for some $n_1 < n_2 < \ldots < n_u$
and $U_{n_i}\in\cT_i$.
Thus is suffices to consider sets of this form.
We have that
\[
\delta(V) = D \cap (X \times X \times\ldots\times U_{n_1}\times\ldots\times U_{n_2}\times\ldots\times U_{n_u}\times X \times\ldots) \overset{\text{open}}{\subseteq} D.
\]
\end{subproof}
This will finish the proof since
\[
D = \{(x,x,\ldots) \in Y : x \in X\}\overset{\text{closed}}{\subseteq} Y
\]
Why? Let $(x_n)\in Y \setminus D$.
Then there are $i < j$ such that $x_i \neq x_j$.
Take disjoint open $x_i \in U$, $x_j \in V$.
Then
\[(x_n)\in X \times X \times\ldots\times U \times\ldots\times X \times\ldots\times V \times X \times\ldots\]
is open in $Y\setminus D$.
Hence $Y \setminus D$ is open, thus $D$ is closed.
It follows that $D$ is Polish.
\end{proof}
\subsection{Parametrizations}
\todo{choose better title}
Let $\Gamma$ denote a collection of sets in some space.
For us $\Gamma$ will be one of $\Sigma^0_\xi(X), \Pi^0_\xi(X), \Delta^0_\xi(X), \cB(X)$,
where $X$ is a metrizable, usually second countable space.
\begin{definition}
We say that $\cU\subseteq Y \times X$
is \vocab{$Y$-universal} for $\Gamma(X)$ /
$\cU$\vocab{parametrizes}$\Gamma(X)$
iff:
\begin{itemize}
\item$\cU\in\Gamma$,
\item$\{U_y : y \in Y\}=\Gamma(X)$.
\end{itemize}
\end{definition}
\begin{example}
Let $X =\omega^\omega$, $Y =2^{\omega}$
and consider $\Gamma=\Sigma^0_{\omega+5}(\omega^\omega)$.
We will show that there is a $2^{\omega}$-universal