w23-logic-3/inputs/tutorial_12b.tex

35 lines
691 B
TeX
Raw Normal View History

2024-01-16 23:14:56 +01:00
\tutorial{12b}{2024-01-16T13:09:02}{}
\subsection{Sheet 10}
\nr 2
\todo{Def skew shift flow (on $(\R / \Z)^2$!)}
The Bernoulli shift, $\Z \acts \{0,1\}^{\Z}$, is not distal.
Let $x = (0)$ and $y = (\delta_{0,i})_{i \in \Z}$.
Let $t_n \to \infty$.
Then $t_n y \to (0) = t_n x$.
2024-01-17 00:00:40 +01:00
% The skew shift flow is distal:
% This is tedious but probably not too hard.
%
% The skew shift flow is not equicontinuous:
2024-01-16 23:14:56 +01:00
2024-01-16 23:59:47 +01:00
\begin{refproof}{fact:isometriciffequicontinuous}.
2024-01-16 23:14:56 +01:00
$d$ and $d'(x,y) \coloneqq \sup_{t \in T} d(tx,ty)$
induce the same topology.
Let $\tau, \tau'$ be the corresponding topologies.
$\tau \subseteq \tau'$ easy,
$\tau' \subseteq \tau'$ : use equicontinuity.
2024-01-16 23:59:47 +01:00
\end{refproof}