2023-12-05 18:13:30 +01:00
\subsection { Sheet 6}
2023-12-05 17:14:51 +01:00
\tutorial { 07} { 2023-11-28} { }
% 5 / 20
2023-12-05 18:13:30 +01:00
\nr 1
2023-12-05 17:14:51 +01:00
\begin { warning}
Note that not every set has a density!
\end { warning}
\begin { enumerate} [(a)]
\item Let $ X = \bI ^ { \omega } $ .
Let $ C _ 0 = \{ ( x _ n ) : x _ n \to 0 \} $ .
Claim: $ C _ 0 \in \Pi ^ 0 _ 3 ( X ) $ (intersections of $ F _ \sigma $ sets).
We have
\[
x \in C_ 0 \iff \forall q \in \Q ^ +.~\exists N.~\forall n \ge N.~x_ n \le q,
\]
i.e.
\[
C_ 0 = \bigcap _ { q \in \Q ^ +} \bigcup _ { N < \omega } \bigcap _ { n > N} \{ x_ n : x_ n \le q\} .
\]
Clearly this is a $ \Pi ^ 0 _ 3 $ set.
\item Let $ Z \coloneqq \{ f \in 2 ^ { \omega } : f ( \N ) \text { has density 0 } \} $ .
Claim: $ Z \in \Pi ^ 0 _ 3 ( 2 ^ { \N } ) $ .
It is
\[
Z = \bigcap _ { q \in \Q ^ +} \bigcup _ { N < \omega }
\bigcap _ { n \ge N} \{ f \in 2^ { \omega } : \frac { \sum _ { i < n} f(i)} { n} \le nq\} .
\]
Clearly this is a $ \Pi ^ 0 _ 3 $ -set.
\end { enumerate}
2023-12-05 18:13:30 +01:00
\nr 2
2023-12-05 17:14:51 +01:00
\begin { fact}
Let $ ( X, \tau ) $ be a Polish space and
$ A \in \cB ( X ) $ .
Then there exists $ \tau ' \supseteq \tau $
with the same Borel sets as $ \tau $
such that $ A $ is clopen.
(Do it for $ A $ closed,
then show that the sets which work
form a $ \sigma $ -algebra).
\end { fact}
\begin { enumerate} [(a)]
\item Let $ ( X, \tau ) $ be Polish.
We want to expand $ \tau $ to a Polish topology
$ \tau _ 0 $ maintaining the Borel sets,
such that $ ( X, \tau ' ) $ is 0d.
Let $ ( U _ n ) _ { n < \omega } $ be a countable base of $ ( X, \tau ) $ .
Each $ U _ n $ is open, hence Borel,
so by a theorem from the lecture$ ^ { \text { tm } } $
there exists a Polish topology $ \tau _ n $
such that $ U _ n $ is clopen, preserving Borel sets.
Hence we get $ \tau _ \infty $
such that all the $ V _ n $ are clopen in $ \tau _ \infty $ .
Let $ \tau ^ { 1 } \coloneqq \tau _ \infty $ .
Do this $ \omega $ -many times to get $ \tau ^ { \omega } $ .
$ \tau ^ { \omega } $ has a base consisting
of finite intersections $ A _ 1 \cap \ldots \cap A _ n $ ,
where $ A _ i $ is a basis element we chose
to construct $ \tau _ i $ ,
hence clopen.
\item Let $ ( X, \tau _ X ) , Y $ be Polish
and $ f \colon X \to Y $ Borel.
Show $ \exists \tau ' \supseteq \tau $ maintaining the Borel structure
with $ f $ continuous.
Let $ ( U _ n ) _ n $ be a countable base of $ Y $ .
Clopenize all the preimages of the $ ( U _ n ) _ n $ .
\item Let $ f \colon X \to Y $ be a Borel isomorphism.
Then there are finer topologies preserving the Borel
structure
such that $ f \colon X' \to Y' $ is a homeomorphism.
Repeatedly apply (c).
Get $ \tau _ X ^ 1 $ to make $ f $ continuous.
Then get $ \tau _ Y ^ 1 $ to make $ f ^ { - 1 } $ continuous
(possibly violating continuity of $ f $ )
and so on.
Let $ \tau _ X ^ \omega \coloneqq \langle \tau _ X ^ n \rangle $
and similarly for $ \tau _ Y ^ \omega $ .
\end { enumerate}
\begin { idea}
If you do something and it didn't work,
try doing it again ($ \omega $ -many times).
\end { idea}
2023-12-05 18:13:30 +01:00
\nr 3
2023-12-05 17:14:51 +01:00
\begin { enumerate} [(a)]
\item Show that if $ \Gamma $ is self-dual (closed under complements)
and closed under continuous preimages,
then for any topological space $ X $ ,
there does not exist an $ X $ -universal set for $ \Gamma ( X ) $ .
Suppose there is an $ X $ -universal set for $ \Gamma ( X ) $ ,
i.e.~$ U \subseteq X \times X $
such that $ U \in \Gamma ( X \times X ) \land \{ U _ x : \in X \} = \Gamma ( X ) $ .
Consider $ X \xrightarrow [ x \mapsto ( x,x ) ] { d } X \times X $ .
Let $ V = U ^ c $ .
Then $ V \in \Gamma ( X \times X ) $ and $ d ^ { - 1 } ( V ) \in \Gamma ( X ) $ .
Then $ d ^ { - 1 } ( V ) = U _ x $ for some $ x $ .
But then $ ( x,x ) \in U \iff x \in d ^ { - 1 } ( V ) \iff ( x,x ) \not \in U \lightning $ .
\item Let $ \xi $ be an ordinal
and let $ X $ be a topological space.
Show that neither $ \cB ( X ) $ nor $ \Delta ^ 0 _ \xi ( X ) $ can have $ X $ -universal
sets.
Clearly $ \cB ( X ) $ is self-dual and closed under continuous preimages.
Clearly $ \Delta ^ 0 _ \xi ( X ) $ is self-dual
and closed under continuous preimages (by a trivial induction).
\end { enumerate}
2023-12-05 18:13:30 +01:00
\nr 4
2023-12-05 17:14:51 +01:00
Recall:
\begin { fact} [Sheet 5, Exercise 1]
Let $ \emptyset \neq X $ be a Baire space.
Then $ \forall A \subseteq X $ ,
$ A $ is either meager or locally comeager.
\end { fact}
2023-12-05 18:13:30 +01:00
\begin { theorem} \footnote { See Kechris 16.1}
2023-12-05 17:14:51 +01:00
Let $ X, Y $ be Polish.
2023-12-05 18:13:30 +01:00
For $ \emptyset \neq U \overset { \text { open } } { \subseteq } Y $
let
\[ A _ U \coloneqq \{ x \in X : A _ x \text { is not meager in $ U $ } \} . \]
Define
\[ \cA \coloneqq \{ A \in \cB ( X \times Y ) : \forall \emptyset \neq U \overset { \text { open } } { \subseteq } Y.~ A _ U \text { is Borel } \} . \]
2023-12-05 17:14:51 +01:00
Then $ \cA $ contains all Borel sets.
\end { theorem}
\begin { proof}
\begin { enumerate} [(i)]
\item Show for $ V \in \cB ( X ) , W \overset { \text { open } } { \subseteq } Y $
that $ V \times W \in \cA $ .
Clearly $ V \times W $ is Borel
and $ \{ x \in X: W \cap U \text { is not meager } \} \in \{ \emptyset , V \} $ .
\item Let $ ( A _ n ) _ { n < \omega } \in \cA ^ { \omega } $ .
Then $ \bigcap _ n A _ n \in \cA $ .
($ ( \bigcup _ n A _ n ) _ U = \bigcup _ n ( A _ { n } ) _ U $ ).
\item Let $ A \in \cA $ and $ B = A ^ c $ .
Fix $ \emptyset \neq U \subseteq Y $ .
Then $ \{ x : A _ x \text { is not meager in $ U$ } \} $ is Borel,
i.e.~$ \{ x : A _ x ^ c \text { is not meager in $ U$ } \} $ is Borel.
Since $ A $ is Borel, $ A _ x $ is Borel as well.
Hence by the fact:
\begin { IEEEeqnarray*} { rCl}
& & \{ x : A_ x^ c \text { is not meager in $ U $ } \} \\
& =& \{ x \colon A_ x^ c \text { is locally comeager in $ U $ } \} \\
& =& \{ x \colon \exists \emptyset \neq V \overset { \text { open} } { \subseteq } V.~ A_ x \text { is meager in $ V $ } \} \\
& =& \bigcup _ { \emptyset \neq V \overset { \text { open} } { \subseteq } U} A_ V^ c
\end { IEEEeqnarray*}
(a countable union suffices, since we only need to check this for $ V $ of the basis; if $ A \subseteq V $ is nwd, then $ A \cap U \subseteq U $ is nwd for all $ U \overset { \text { open } } { \subseteq } V $ ).
\end { enumerate}
\end { proof}