2023-12-05 17:14:51 +01:00
|
|
|
\subsection{Sheet 1}
|
2023-10-31 10:12:58 +01:00
|
|
|
\tutorial{02}{2023-10-24}{}
|
|
|
|
% Points: 15 / 16
|
|
|
|
|
2023-12-05 17:14:51 +01:00
|
|
|
\nr 1
|
|
|
|
\todo{handwritten solution}
|
|
|
|
|
|
|
|
\nr 2
|
|
|
|
|
|
|
|
\begin{enumerate}[(a)]
|
|
|
|
\item $d$ is an ultrametric:
|
|
|
|
|
|
|
|
Let $f,g,h \in X^{\N}$.
|
|
|
|
|
|
|
|
We need to show that $d(f,g) \le \max(d(f,h), d(g,h))$.
|
|
|
|
|
|
|
|
If $f = g$ this is trivial.
|
|
|
|
Otherwise let $n$ be minimal such that $f(n) \neq g(n)$.
|
|
|
|
Then $h(n) \neq f(n)$ or $ h(n) \neq g(n)$
|
|
|
|
must be the case.
|
|
|
|
W.l.o.g.~$h(n) \neq f(n)$.
|
|
|
|
Then $d(f,g) = \frac{1}{1+n} \le d(f,h)$.
|
|
|
|
|
|
|
|
\item $d$ induces the product topology on $X^{\N}$:
|
|
|
|
|
|
|
|
It suffices to show that the $\epsilon$-balls with respect to $d$
|
|
|
|
are exactly the basic open set of the product topology,
|
|
|
|
i.e.~the sets of the form
|
|
|
|
\[
|
|
|
|
\{x_1\} \times \ldots \times \{x_n\} \times X^{\N}
|
|
|
|
\]
|
|
|
|
for some $n \in \N$, $x_1,\ldots,x _n \in X$.
|
|
|
|
|
|
|
|
Let $\epsilon > 0$. Let $n$ be minimal such that $\frac{1}{1+n} \ge \epsilon$.
|
|
|
|
Then $B_{\epsilon}((x_i)_{i \in \N}) = \{x_1\} \times \{x_n\} \times X^{\N}$.
|
|
|
|
Since $\N \ni n \mapsto \frac{1}{1+n}$
|
|
|
|
is injective, every basic open set of the product topology
|
|
|
|
can be written in this way.
|
|
|
|
|
|
|
|
\item $d$ is complete:
|
|
|
|
|
|
|
|
Let $(f_n)_{n \in \N}$ be a Cauchy sequence with respect to $d$.
|
|
|
|
For $n \in \N$ take $N_n \in \N$
|
|
|
|
such that $d(f_i, f_j) < \frac{1}{1 + n}$.
|
|
|
|
Clearly $f_i(n) = f_j(n)$ for all $n > N_n$.
|
|
|
|
|
|
|
|
Define $f \in X^\N$ by $f(n) \coloneqq f_{N_n}(n)$.
|
|
|
|
Then $ (f_n)_{n \in \N}$
|
|
|
|
converges to $f$,
|
|
|
|
since for all $n > N_n$ $f_n$
|
|
|
|
|
|
|
|
|
|
|
|
\item If $X$ is countable, then $X^{\N}$ with the product topology
|
|
|
|
is a Polish space:
|
|
|
|
|
|
|
|
(We assume that $X$ is non-empty, as otherwise the claim is wrong)
|
|
|
|
|
|
|
|
We need to show that there exists a countable dense subset.
|
|
|
|
To this end, pick some $x_0 \in X$ and
|
|
|
|
consider the set $D \coloneqq \bigcup_{n\in \N} (X^n \times \{x_{0}\}^{\N})$.
|
|
|
|
Since $X$ is countable, so is $D$.
|
|
|
|
Take some $(a_n)_{n \in \N} \in X^{\N}$
|
|
|
|
and consider $B \coloneqq B_{\epsilon}((a_n)_{n \in \N})$.
|
|
|
|
Let $m$ be such that $\frac{1}{1+m} < \epsilon$.
|
|
|
|
Then $(b_{n})_{n \in \N} \in B \cap D$,
|
|
|
|
where $b_n \coloneqq a_n$ for $n \le m$ and $b_n \coloneqq x_0$
|
|
|
|
otherwise.
|
|
|
|
Hence $D$ is dense.
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
\nr 3
|
|
|
|
|
|
|
|
\begin{enumerate}[(a)]
|
|
|
|
\item $S_{\infty}$ is a Polish space:
|
|
|
|
|
|
|
|
From (2) we know that $\N^{\N}$ is Polish.
|
|
|
|
Hence it suffices to show that $S_{\infty}$ is $G_{\delta}$
|
|
|
|
with respect to $\N^\N$.
|
|
|
|
|
|
|
|
Consider the sets $I \coloneqq \bigcap_{(i,j) \in \N^2, i < j} \{f \in \N^{\N} | f(i) \neq f(j)\}$
|
|
|
|
and $S \coloneqq \bigcap_{n \in \N} \{f \in \N^\N | n \in \im f\}$.
|
|
|
|
|
|
|
|
We have that $\{f \in \N^\N | f(i) \neq f(j)\} = \bigcup_{n \in \N} \N^{i-1} \times \{n\} \times \N^{i - j -1 } \times (\N \setminus \{n\} ) \times \N^\N$
|
|
|
|
is open.
|
|
|
|
Hence $I$ is $G_{\delta}$.
|
|
|
|
|
|
|
|
Furthermore $\{f \in \N^{\N} | n \in \im f\} = \bigcup_{k \in \N} \N^k \times \{n\} \times \N^\N$j
|
|
|
|
is open,
|
|
|
|
thus $S$ is $G_\delta$ as well.
|
|
|
|
In particular $S \cap G$ is $G_\delta$.
|
|
|
|
Since $I$ is the subset of injective functions
|
|
|
|
and $S$ is the subset of surjective functions,
|
|
|
|
we have that $S_{\infty} = I \cap S$.
|
|
|
|
|
|
|
|
\item $S_{\infty}$ is not locally compact:
|
|
|
|
|
|
|
|
Consider the point $x = (i)_{i \in \N} \in S_{\infty}$.
|
|
|
|
Let $x \in B$ be open. We need to show that there
|
|
|
|
is no closed compact set $C \supseteq B$
|
|
|
|
W.l.o.g.~let $B = (\{0\} \times \ldots \times \{n\} \times \N^\N) \cap S_\infty$
|
|
|
|
for some $n \in \N$.
|
|
|
|
Let $C \supseteq B$ be some closed set.
|
|
|
|
Consider the open covering
|
|
|
|
\[
|
|
|
|
\{S_{\infty} \setminus B\} \cup \{ B_j | j > n\}.
|
|
|
|
\]
|
|
|
|
where
|
|
|
|
\[
|
|
|
|
B_j \coloneqq (\{0\} \times \ldots \times \{n\} \times \{j\} \times \N^{\N}) \cap S_\infty.
|
|
|
|
\]
|
|
|
|
Clearly there cannot exist a finite subcover
|
|
|
|
as $B$ is the disjoint union of the $B_j$.
|
|
|
|
|
|
|
|
% TODO Think about this
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
\nr 4
|
|
|
|
|
|
|
|
% (uniform metric)
|
|
|
|
%
|
|
|
|
% \begin{enumerate}[(a)]
|
|
|
|
% \item $d_u$ is a metric on $\cC(X,Y)$:
|
|
|
|
%
|
|
|
|
% It is clear that $d_u(f,f) = 0$.
|
|
|
|
%
|
|
|
|
% Let $f \neq g$. Then there exists $x \in X$ with
|
|
|
|
% $f(x) \neq g(x)$, hence $d_u(f,g) \ge d(f(x), g(x)) > 0$.
|
|
|
|
%
|
|
|
|
% Since $d$ is symmetric, so is $d_u$.
|
|
|
|
%
|
|
|
|
% Let $f,g,h \in \cC(X,Y)$.
|
|
|
|
% Take some $\epsilon > 0$
|
|
|
|
% choose $x_1, x_2 \in X$
|
|
|
|
% with $d_u(f,g) \le d(f(x_1), g(x_1)) + \epsilon$,
|
|
|
|
% $d_u(g,h) \le d(g(x_2), h(x_2)) + \epsilon$.
|
|
|
|
%
|
|
|
|
% Then for all $x \in X$
|
|
|
|
% \begin{IEEEeqnarray*}{rCl}
|
|
|
|
% d(f(x), h(x)) &\le &
|
|
|
|
% d(f(x), g(x)) + d(g(x), h(x))\\
|
|
|
|
% &\le & d(f(x_1), g(x_1)) + d(g(x_2), h(x_2))-2\epsilon\\
|
|
|
|
% &\le & d_u(f,g) + d_u(g,h) - 2\epsilon.
|
|
|
|
% \end{IEEEeqnarray*}
|
|
|
|
% Thus $d_u(f,g) \le d_u(f,g) + d_u(g,h) - 2\epsilon$.
|
|
|
|
% Taking $\epsilon \to 0$ yields the triangle inequality.
|
|
|
|
%
|
|
|
|
% \item $\cC(X,Y)$ is a Polish space:
|
|
|
|
% \todo{handwritten solution}
|
|
|
|
%
|
|
|
|
% \begin{itemize}
|
|
|
|
% \item $d_u$ is a complete metric:
|
|
|
|
%
|
|
|
|
% Let $(f_n)_n$ be a Cauchy series with respect to $d_u$.
|
|
|
|
%
|
|
|
|
% Then clearly $(f_n(x))_n$ is a Cauchy sequence with respect
|
|
|
|
% to $d$ for every $x$.
|
|
|
|
% Hence there exists a pointwise limit $f$ of the $f_n$.
|
|
|
|
% We need to show that $f$ is continuous.
|
|
|
|
%
|
|
|
|
% %\todo{something something uniform convergence theorem}
|
|
|
|
%
|
|
|
|
% \item $(\cC(X,Y), d_u)$ is separable:
|
|
|
|
%
|
|
|
|
% Since $Y$ is separable, there exists a countable
|
|
|
|
% dense subset $S \subseteq Y$.
|
|
|
|
%
|
|
|
|
% Consider $\cC(X,S) \subseteq \cC(X,Y)$.
|
|
|
|
% Take some $f \in \cC(X,Y)$.
|
|
|
|
% Since $X$ is compact,
|
|
|
|
%
|
|
|
|
%
|
|
|
|
% % TODO
|
|
|
|
%
|
|
|
|
% \end{itemize}
|
|
|
|
% \end{enumerate}
|
2023-10-31 10:12:58 +01:00
|
|
|
|
|
|
|
\begin{fact}
|
2023-12-05 17:14:51 +01:00
|
|
|
Let $X $ be a compact Hausdorff space.
|
2023-10-31 10:12:58 +01:00
|
|
|
Then the following are equivalent:
|
|
|
|
\begin{enumerate}[(i)]
|
|
|
|
\item $X$ is Polish,
|
|
|
|
\item $X$ is metrisable,
|
|
|
|
\item $X$ is second countable.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{fact}
|
|
|
|
\begin{proof}
|
|
|
|
(i) $\implies$ (ii) clear
|
|
|
|
|
|
|
|
(i) $\implies$ (iii) clear
|
|
|
|
|
|
|
|
(ii) $\implies$ (i) Consider the cover $\{B_{\epsilon}(x) | x \in X\}$
|
|
|
|
for every $\epsilon \in \Q$
|
|
|
|
and chose a finite subcover.
|
|
|
|
Then the midpoints of the balls from the cover
|
|
|
|
form a countable dense subset.
|
|
|
|
|
|
|
|
The metric is complete as $X$ is compact.
|
|
|
|
(For metric spaces: compact $\iff$ seq.~compact $\iff$ complete and totally bounded)
|
|
|
|
|
|
|
|
(iii) $\implies$ (ii)
|
|
|
|
Use Urysohn's metrisation theorem and the fact that compact
|
|
|
|
Hausdorff spaces are normal
|
|
|
|
\end{proof}
|
|
|
|
|
2023-12-05 17:14:51 +01:00
|
|
|
Let $X$ be compact Polish\footnote{compact metrisable $\implies$ compact Polish}
|
2023-10-31 10:12:58 +01:00
|
|
|
and $Y $ Polish.
|
|
|
|
Let $\cC(X,Y)$ be the set of continuous functions $X \to Y$.
|
|
|
|
Consider the metric $d_u(f,g) \coloneqq \sup_{x \in X} |d(f(x), g(x))|$.
|
|
|
|
Clearly $d_u$ is a metric.
|
|
|
|
|
|
|
|
\begin{claim}
|
|
|
|
$d_u$ is complete.
|
|
|
|
\end{claim}
|
|
|
|
\begin{subproof}
|
|
|
|
Let $(f_n)$ be a Cauchy sequence in $\cC(X,Y)$.
|
|
|
|
A $Y$ is complete,
|
|
|
|
there exists a pointwise limit $f$.
|
|
|
|
|
|
|
|
$f_n$ converges uniformly to $f$:
|
|
|
|
|
|
|
|
\[
|
|
|
|
d(f_n(x), f(x)) \le \overbrace{d(f_n(x), f_m(x))}^{\mathclap{\text{$(f_n)$ is Cauchy}}}
|
|
|
|
+ \underbrace{d(f_m(x), f(x))}_{\mathclap{\text{small for appropriate $m$}}}.
|
|
|
|
\]
|
|
|
|
|
|
|
|
$f$ is continuous by the uniform convergence theorem.
|
|
|
|
\end{subproof}
|
|
|
|
|
|
|
|
\begin{claim}
|
|
|
|
There exists a countable dense subset.
|
|
|
|
\end{claim}
|
2024-01-04 14:59:44 +01:00
|
|
|
\begin{subproof}
|
|
|
|
Fix a metric $d_X$ on $X$ defining its topology.
|
|
|
|
Let
|
|
|
|
\[
|
|
|
|
C_{m,n} \coloneqq \{f \in \cC(X,Y) : \forall x,y \in X.~\left( d_X(x,y) < \frac{1}{m+1} \implies d(f(x), f(y)) <\frac{1}{n+1}\right) \}.
|
|
|
|
\]
|
|
|
|
|
|
|
|
Choose $X_m \subseteq X$ finite with $X \subseteq \bigcup_{x \in X_m} B_{\frac{1}{m+1}}(x)$.
|
|
|
|
Let $D_{m,n} \subseteq C_{m,n}$ be countable,
|
|
|
|
such that for every $f \in C_{m,n}$ and every $\eta > 0$,
|
|
|
|
there is $g \in D_{m,n}$ with $d(f(y), g(y)) < \frac{\eta}{3}$
|
|
|
|
for each $y \in X_m$.
|
|
|
|
Then $\bigcup_{m,n} D_{m,n}$ is dense in $\cC(X,Y)$:
|
|
|
|
Indeed if $f \in \cC(X,Y)$ and $\eta > 0$,
|
|
|
|
we finde $n > \frac{3}{\eta}$ and $m$ such that $f \in C_{m,n}$,
|
|
|
|
since $f$ is uniformly continuous.
|
|
|
|
Let $g \in D_{m,n}$ be such that $\forall y \in X_m.~d(f(y), g(y)) < \frac{1}{n+1}$.
|
|
|
|
We have $d_u(f,g) \le \eta$,
|
|
|
|
since for every $x \in X$, we find $y \in X_m$ with $d_X(x,y) < \frac{1}{m+1}$,
|
|
|
|
hence
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
d_Y(f(x), g(x)) &\le& d_Y(f(x), f(y)) + d_Y(f(y), g(y)) + d_Y(g(y), g(x))\\
|
|
|
|
&\le& \frac{1}{n+1} + \frac{1}{n+1} + \frac{1}{n+1} \le \eta.
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
\end{subproof}
|