2023-11-03 11:55:11 +01:00
|
|
|
\lecture{06}{2023-11-03}{}
|
|
|
|
|
|
|
|
% \begin{refproof}{thm:kuratowskiulam}
|
|
|
|
\begin{enumerate}[(i)]
|
|
|
|
\item Let $A$ be a set with the Baire Property.
|
|
|
|
Write $A = U \symdif M$
|
|
|
|
for $U$ open and $M$ meager.
|
|
|
|
Then for all $x$,
|
|
|
|
we have that $A_x = U_x \symdif M_x$,
|
|
|
|
where $U_x$ is open,
|
|
|
|
and $\{x : M_x \text{ is meager}\}$ is comeager.
|
|
|
|
Therefore $\{x : U_x \text{ open } \land M_x \text{ meager }\}$
|
|
|
|
is comeager,
|
|
|
|
and for those $x$, $A_x$ has the Baire property.
|
|
|
|
\end{enumerate}
|
|
|
|
% TODO: fix counter
|
|
|
|
\begin{claim} % Claim 2
|
|
|
|
\label{thm:kuratowskiulam:c2}
|
|
|
|
For $P \subseteq X$, $Q \subseteq Y$ with the Baire
|
|
|
|
property, let $R \coloneqq P \times Q$.
|
|
|
|
Then $R$ is meager iff at least one of $P$ or $Q$ is meager.
|
|
|
|
\end{claim}
|
|
|
|
\begin{refproof}{thm:kuratowskiulam:c2}
|
|
|
|
Suppose that $R$ is meager.
|
|
|
|
Then by \yaref{thm:kuratowskiulam:c1b},
|
|
|
|
we have that $C = \{x : R_x \text{ is meager }\}$ is comeager.
|
|
|
|
\begin{itemize}
|
|
|
|
\item If $P$ is meager, the statement holds trivially.
|
|
|
|
\item If $P$ is not meager,
|
|
|
|
then $P \cap C \neq \emptyset$.
|
|
|
|
For $x \in P \cap C$
|
|
|
|
we have that $R_x$ is meager
|
|
|
|
and $R_x = Q$,
|
|
|
|
hence $Q$ is meager.
|
|
|
|
\end{itemize}
|
|
|
|
|
|
|
|
On the other hand suppose that $P$ is meager.
|
|
|
|
Then $P = \bigcup_{n} F_n$ for nwd sets $F_n$.
|
|
|
|
Note that $F_n \times Y$ is nwd.
|
|
|
|
So $F_n \times Q$ is also nwd.
|
|
|
|
Hence $P \times Q$ is a countable union
|
|
|
|
of nwd sets,
|
|
|
|
so it is meager.
|
|
|
|
\end{refproof}
|
|
|
|
\begin{enumerate}[(i)]
|
|
|
|
\item[(ii)]
|
|
|
|
``$\impliedby$''
|
|
|
|
Let $A$ be a set with the Baire property
|
|
|
|
such that $\{x : A_x \text{ is meager}\}$ is comeager.
|
|
|
|
Let $A = U \symdif M$ for $U$ open and $M$ meager.
|
|
|
|
Towards a contradiction suppose that $A$ is not meager.
|
|
|
|
Then $U$ is not meager.
|
|
|
|
Since $X \times Y$ is second countable,
|
|
|
|
we have that $A$ is a countable union of open rectangles.
|
|
|
|
At least one of them, say $G \times H \subseteq A$,
|
|
|
|
is not meager.
|
|
|
|
By \yaref{thm:kuratowskiulam:c2},
|
|
|
|
both $G$ and $H$ are not meager.
|
|
|
|
Since
|
|
|
|
$\{x\colon A_x \text{ is meager} \land M_x \text{ is meager}\}$
|
|
|
|
is comeager (using \yaref{thm:kuratowskiulam:c1b}),
|
|
|
|
there is $x_0 \in G$ such that $A_{x_0}$ is meager and $M_{x_0}$
|
|
|
|
is meager.
|
|
|
|
But then $H$ is meager as
|
|
|
|
\[
|
|
|
|
H \setminus M_{x_0} \subseteq U_{x_0} \setminus M_{x_0}
|
|
|
|
\subseteq U_{x_0} \symdif M_{x_0} = A_{x_0}
|
|
|
|
\]
|
|
|
|
and $M_{x_0}$ is meager $\lightning$.
|
|
|
|
|
|
|
|
``$\implies$''
|
|
|
|
This is \yaref{thm:kuratowskiulam:c1b}.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{refproof}
|
|
|
|
|
|
|
|
\section{Borel sets} % TODO: fix chapters
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Let $X$ be a topological space.
|
|
|
|
Let $\cB(X)$ denote the smallest $\sigma$-algebra,
|
|
|
|
that contains all open sets.
|
|
|
|
Elements of $\cB(X)$ are called \vocab{Borel sets}.
|
|
|
|
\end{definition}
|
|
|
|
\begin{remark}
|
|
|
|
Note that all Borel sets have the Baire property.
|
|
|
|
\end{remark}
|
|
|
|
|
|
|
|
\subsection{The hierarchy of Borel sets}
|
|
|
|
|
|
|
|
Let $\omega_1$ be the first uncountable ordinal.
|
|
|
|
For every $d < \omega_1$,
|
|
|
|
we define by transfinite recursion
|
|
|
|
classes $\Sigma^0_\alpha$
|
|
|
|
and $\Pi^0_\alpha$
|
|
|
|
(or $\Sigma^0_\alpha(X)$ and $\Pi^0_\alpha(X)$ for a topological space $X$).
|
|
|
|
|
|
|
|
Let $X$ be a topological space.
|
|
|
|
Then define
|
|
|
|
\[\Sigma^0_1(X) \coloneqq \{U \overset{\text{open}}{\subseteq} X\},\]
|
|
|
|
\[
|
|
|
|
\Pi^0_\alpha(X) \coloneqq \lnot \Sigma^0_\alpha(X) \coloneqq
|
|
|
|
\{X \setminus A | A \in \Sigma^0_\alpha(X)\},
|
|
|
|
\]
|
|
|
|
% \todo{Define $\lnot$ (element-wise complement)}
|
|
|
|
and for $\alpha > 1$
|
|
|
|
\[
|
|
|
|
\Sigma^0_\alpha \coloneqq \{\bigcup_{n < \omega} A_n : A_n \in \Pi^0_{\alpha_n}(X) \text{ for some $\alpha_n < \alpha$}\}.
|
|
|
|
\]
|
|
|
|
|
|
|
|
Note that $\Pi_1^0$ is the set of closed sets,
|
|
|
|
$\Sigma^0_2 = F_\sigma$,
|
|
|
|
and $\Pi^0_2 = G_\delta$.
|
|
|
|
|
|
|
|
Furthermore define
|
|
|
|
\[
|
2024-01-13 23:42:59 +01:00
|
|
|
\Delta^0_\alpha(X) \coloneqq \Sigma^0_\alpha(X) \cap \Pi^0_\alpha(X),
|
2023-11-03 11:55:11 +01:00
|
|
|
\]
|
|
|
|
i.e.~$\Delta^0_1$ is the set of clopen sets.
|
|
|
|
|
|
|
|
\iffalse % TODO Fix this!
|
|
|
|
\resizebox{\textwidth}{!}{
|
|
|
|
% https://q.uiver.app/#q=WzAsMTMsWzAsMSwiXFxEZWx0YV8xXjAiXSxbMSwwLCJcXFNpZ21hXzFeMCJdLFsxLDIsIlxcUGleMF8xIl0sWzIsMSwiXFxEZWx0YV4wXzIiXSxbMywwLCJcXFNpZ21hXjBfMiJdLFszLDIsIlxcUGlfMl4wIl0sWzQsMSwiXFxEZWx0YV4wXzMiXSxbNiwxLCJcXERlbHRhXjBfXFx4aSJdLFs3LDAsIlxcU2lnbWFeMF9cXHhpIl0sWzcsMiwiXFxQaV4wX1xceGkiXSxbNSwxLCJcXGxkb3RzIl0sWzgsMSwiXFxEZWx0YV4wX3tcXHhpICsgMX0iXSxbOSwxLCJcXGxkb3RzIl0sWzAsMSwiXFxzdWJzZXRlcSIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzAsMiwiXFxzdWJzZXRlcSIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoiYm90dG9tIn19fV0sWzIsMywiIiwyLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbMSwzLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFszLDQsIiIsMCx7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoidG9wIn19fV0sWzMsNSwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJib3R0b20ifX19XSxbNyw4LCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFs3LDksIiIsMix7InN0eWxlIjp7InRhaWwiOnsibmFtZSI6Imhvb2siLCJzaWRlIjoiYm90dG9tIn19fV0sWzQsNiwiIiwwLHsic3R5bGUiOnsidGFpbCI6eyJuYW1lIjoiaG9vayIsInNpZGUiOiJ0b3AifX19XSxbNSw2LCIiLDEseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6ImJvdHRvbSJ9fX1dLFs4LDExLCIiLDAseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6InRvcCJ9fX1dLFs5LDExLCIiLDIseyJzdHlsZSI6eyJ0YWlsIjp7Im5hbWUiOiJob29rIiwic2lkZSI6ImJvdHRvbSJ9fX1dXQ==
|
|
|
|
\[\begin{tikzcd}
|
|
|
|
& {\Sigma_1^0} && {\Sigma^0_2} &&&& {\Sigma^0_\xi} \\
|
|
|
|
{\Delta_1^0} && {\Delta^0_2} && {\Delta^0_3} & \ldots & {\Delta^0_\xi} && {\Delta^0_{\xi + 1}} & \ldots \\
|
|
|
|
& {\Pi^0_1} && {\Pi_2^0} &&&& {\Pi^0_\xi}
|
|
|
|
\arrow["\subseteq", hook, from=2-1, to=1-2]
|
|
|
|
\arrow["\subseteq"', hook', from=2-1, to=3-2]
|
|
|
|
\arrow[hook, from=3-2, to=2-3]
|
|
|
|
\arrow[hook, from=1-2, to=2-3]
|
|
|
|
\arrow[hook, from=2-3, to=1-4]
|
|
|
|
\arrow[hook', from=2-3, to=3-4]
|
|
|
|
\arrow[hook, from=2-7, to=1-8]
|
|
|
|
\arrow[hook', from=2-7, to=3-8]
|
|
|
|
\arrow[hook, from=1-4, to=2-5]
|
|
|
|
\arrow[hook', from=3-4, to=2-5]
|
|
|
|
\arrow[hook, from=1-8, to=2-9]
|
|
|
|
\arrow[hook', from=3-8, to=2-9]
|
|
|
|
\end{tikzcd}\]%
|
|
|
|
}
|
|
|
|
\fi
|
|
|
|
|
|
|
|
\begin{proposition}
|
|
|
|
Let $X$ be a metrizable space.
|
|
|
|
Then
|
|
|
|
\begin{enumerate}[(a)]
|
|
|
|
\item $\Sigma^0_\eta(X) \cup \Pi^0_\eta(X) \subseteq \Delta^0_\xi(X)$
|
|
|
|
for all $1 \le \eta < \xi < \omega_1$.
|
|
|
|
\item $\cB(X) = \bigcup_{\alpha < \omega_1} \Sigma^0_\alpha(X) = \bigcup_{\alpha < \omega_1} \Pi^0_\alpha(X) = \bigcup_{\alpha < \omega_1} \Delta^0_\alpha(X)$.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{proposition}
|
|
|
|
\begin{proof}
|
|
|
|
\begin{enumerate}[(a)]
|
|
|
|
\item \begin{observe}
|
|
|
|
\label{ob:sigmasuffices}
|
|
|
|
For all $1 \le \alpha < \beta < \omega_1$,
|
|
|
|
we have $\Pi^0_\alpha(X) \subseteq \Sigma^0_\beta(X)$
|
|
|
|
by taking ``unions'' of singleton sets.
|
|
|
|
|
|
|
|
Furthermore $\Sigma^0_\alpha(X) \subseteq \Pi^0_\beta(X)$
|
|
|
|
by passing to complements.
|
|
|
|
\end{observe}
|
|
|
|
It suffices to show $\Sigma^0_\eta(X) \subseteq \Delta^0_\xi(X)$,
|
|
|
|
since $\Delta^0_\eta(X)$ is closed under complements.
|
|
|
|
|
|
|
|
Furthermore, it suffices to show $\Sigma^0_\eta(X) \subseteq \Sigma^0_\xi(X)$,
|
|
|
|
by \yaref{ob:sigmasuffices}
|
|
|
|
(since $\Sigma^0_\eta(X) \subseteq \Pi^0_\xi(X)$
|
|
|
|
and $\Delta^0_\xi(X) = \Sigma^0_\xi(X) \cap \Pi^0_\xi(X)$).
|
|
|
|
|
|
|
|
So to prove (a) it suffices to show that for all $1 \le \eta < \xi < \omega_1$,
|
|
|
|
we have $\Sigma^0_\eta(X) \subseteq \Sigma^0_\xi(X)$.
|
|
|
|
For $\eta = 1, \xi = 2$
|
|
|
|
this holds, since every open set is $F_\sigma$.%
|
|
|
|
\footnote{Here we use that $X$ is metrizable!}
|
|
|
|
% \todo{REF}
|
|
|
|
|
|
|
|
For $\eta > 1, \xi > \eta$,
|
|
|
|
we have
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
\Sigma^0_\eta(X) &=&
|
|
|
|
\{ \bigcup_{n} A_n : A_n \in \Pi^0_{\alpha_n}(X), \alpha_n < \eta\}\\
|
|
|
|
&\subseteq&
|
|
|
|
\{\bigcup_{n}B_n : B_n \in \Pi^0_{\beta_n}(X), \beta_n < \xi\}
|
|
|
|
= \Sigma^0_\xi(X).
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
\item Let $\cB_0 \coloneqq \bigcup_{\alpha < \omega_1} \Sigma^0_\alpha(X) = \bigcup_{\alpha < \omega_1} \Pi^0_\alpha(X) = \bigcup_{\alpha < \omega_1} \Delta^0_\alpha(X)$.
|
|
|
|
We need to show that $\cB_0 = \cB(X)$.
|
|
|
|
Clearly $\cB_0 \subseteq \cB(X)$.
|
|
|
|
It suffices to notice that $\cB_0$ is a $\sigma$-algebra
|
|
|
|
containing all open sets.
|
|
|
|
Consider $\bigcup_{n < \omega} A_n$ for some $A_n \in B_0$.
|
|
|
|
Then $A_n \in \Pi^0_{\alpha_n}(X)$ for some $\alpha_n < \omega_1$.
|
|
|
|
Let $\alpha = \sup \alpha_n < \omega_1$.
|
|
|
|
Then $\bigcup_{n < \omega} A_n \in \Sigma^0_\alpha(X)$.
|
|
|
|
It is clear that $\cB_0$ is closed under complements.
|
|
|
|
\end{enumerate}
|
|
|
|
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
\begin{example}
|
|
|
|
% TODO move to counter examples.
|
|
|
|
Consider the cofinite topology on $\omega_1$.
|
|
|
|
Then the non-empty open sets of this are not $F_\sigma$.
|
|
|
|
\end{example}
|