2024-01-23 10:56:16 +01:00
|
|
|
\lecture{24}{2024-01-23}{Combinatorics!}
|
|
|
|
|
|
|
|
|
|
|
|
\subsection{Applications to Combinatorics} % Ramsey Theory}
|
|
|
|
|
|
|
|
% TODO Define Ultrafilter
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
An \vocab{ultrafilter} on $\N$ (or any other set)
|
|
|
|
is a family $\cU \subseteq \cP(\N)$
|
|
|
|
such that
|
|
|
|
\begin{enumerate}[(1)]
|
|
|
|
\item $X \in \cU \land X \subseteq Y \subseteq \N \implies Y \in \cU$.
|
|
|
|
\item $X,Y \in \cU \implies X \cap Y \in \cU$.
|
|
|
|
\item $\emptyset \not\in \cU$, $\N \in \cU$.
|
|
|
|
\item For all $X \subseteq \N$,
|
|
|
|
we have $X \in \cU \lor \N \setminus X \in \cU$.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{definition}
|
|
|
|
\begin{remark}
|
|
|
|
\begin{itemize}
|
|
|
|
\item If $X \cup Y \in \cU$ then $X \in \cU \lor Y$ or $Y \in \cU$:
|
|
|
|
Consider $((\N \setminus X) \cap (\N \setminus Y) = \N \setminus (X \cup Y)$.
|
|
|
|
\item Every filter can be extended to an ultrafilter.
|
|
|
|
(Zorn's lemma)
|
|
|
|
\end{itemize}
|
|
|
|
\end{remark}
|
|
|
|
\begin{definition}
|
|
|
|
An ultrafilter is called \vocab[Ultrafilter!principal]{principal} or \vocab[Ultrafilter!trivial]{trivial}
|
|
|
|
if it is of the form
|
|
|
|
\[
|
|
|
|
\hat{n} = \{X \subseteq \N : n \in X\}.
|
|
|
|
\]
|
|
|
|
\end{definition}
|
|
|
|
\begin{notation}
|
|
|
|
Let $\phi(\cdot )$ be a formula, where the argument is a natural number.
|
|
|
|
Let $\cU$ be an ultrafilter.
|
|
|
|
We write
|
|
|
|
\[
|
|
|
|
(\cU n) ~ \phi(n)
|
|
|
|
\]
|
|
|
|
for $\{ n \in \N : \phi(n)\} \in \cU$.
|
|
|
|
We say that $\phi(n)$ holds for \vocab{$\cU$-almost all} $n$.
|
|
|
|
\end{notation}
|
|
|
|
\begin{observe}
|
|
|
|
Let $\phi(\cdot )$, $\psi(\cdot )$ be formulas.
|
|
|
|
|
|
|
|
\begin{enumerate}[(1)]
|
|
|
|
\item $(\cU n) (\phi(n) \land \psi(m)) \iff (\cU n) \phi(n) \land (\cU n) \psi(n)$.
|
|
|
|
\item $(\cU n) (\phi(n) \lor \psi(m)) \iff (\cU n) \phi(n) \lor (\cU n) \psi(n)$.
|
|
|
|
\item $(\cU n) \lnot \phi(n) \iff \lnot (\cU n) \phi(n)$.
|
|
|
|
\end{enumerate}
|
|
|
|
\end{observe}
|
|
|
|
\begin{lemma}
|
|
|
|
\label{lem:ultrafilterlimit}
|
|
|
|
Let $X $ be a compact Hausdorff space.
|
|
|
|
Let $\cU$ be an ultrafilter.
|
|
|
|
Then for every sequence $(x_n)$ in $X$,
|
|
|
|
there is a unique $x \in X$,
|
|
|
|
such that
|
|
|
|
\[
|
|
|
|
(\cU_n) (x_n \in G)
|
|
|
|
\]
|
|
|
|
for every neighbourhood%
|
|
|
|
\footnote{$G \subseteq X$ is a neighbourhood iff $x \in \inter G$.}
|
|
|
|
$G$ of $x$.
|
|
|
|
\end{lemma}
|
|
|
|
\begin{notation}
|
|
|
|
In this case we write $x = \cU-\lim_n x_n$.
|
|
|
|
\end{notation}
|
|
|
|
\begin{refproof}{lem:ultrafilterlimit}[sketch]
|
|
|
|
Whenever we write $X = Y \cup Z$
|
|
|
|
we have $(\cU n) x_n \in Y$
|
|
|
|
or $(\cU n) x_n \in Z$.
|
|
|
|
|
|
|
|
So we can repeatedly chop the space in two pieces,
|
|
|
|
one of them contains $\cU$-almost all $x_n$,
|
|
|
|
Then we restrict to this piece and continue.
|
|
|
|
|
|
|
|
For this to work, we need
|
|
|
|
a finite collection $\cP_n$ of closed sets for every $n$,
|
|
|
|
such that $\bigcup \cP_n = X$,
|
|
|
|
$C \in \cP_{n+1} \implies \exists C \subseteq D \in \cP_{n}$
|
|
|
|
and
|
|
|
|
$C_1 \supseteq C_2 \supseteq \ldots$, $C_i \in \cP_i $ $\implies | \bigcap_{i} C_i| = 1$.
|
|
|
|
It is clear that we can do this for metric spaces,
|
|
|
|
but such partition can be found for compact Hausdorff spaces as well.
|
|
|
|
\end{refproof}
|
|
|
|
|
|
|
|
Let $\beta \N$ be the Čech-Stone compactification of $\N$,
|
|
|
|
i.e.~the set of all ultrafilters on $\N$
|
|
|
|
with the topology given by open sets $V_{A} = \{ p \in \beta\N : A \in P\} $
|
|
|
|
for $A \subseteq \N$.
|
|
|
|
|
|
|
|
This is a compact Hausdorff space.\todo{Homework}
|
|
|
|
We can turn it into a compact semigroup:
|
|
|
|
Consider $+ \colon \N \times \N \to \N$.
|
|
|
|
This gives an operation on principal ultrafilters
|
|
|
|
(we identify $n \in \N$ with the corresponding principal filter).
|
|
|
|
We want to extend this to all of $\beta\N$.
|
|
|
|
Fix the first argument to get a function $\N \to \N, n \mapsto k+n$.
|
|
|
|
For $\cU \in \beta\N$ consider $\cU-\lim_n (k+n)$.
|
|
|
|
So for a fixed $k \in \N$ we get $k+ \cdot \colon\beta\N \to \beta\N$,
|
|
|
|
i.e.~$+ \colon \N \times \beta\N \to \beta\N$.
|
|
|
|
Fixing the second coordinate to be $\cV \in \beta\N$,
|
|
|
|
we get a function $+\cV \colon \N \to \beta\N$.
|
|
|
|
For $ \cU \in \beta\N$
|
|
|
|
consider $\cU-\lim_n n + \cV$.
|
|
|
|
This gives $+ \colon \beta\N \times \beta\N \to \beta\N$.
|
|
|
|
% TODO ?
|
|
|
|
|
|
|
|
\[
|
|
|
|
\cU + \cV = \{X \subseteq \N : \{m \colon \{n \colon m+n \in X\} \in \cV \} \in \cU \}.
|
|
|
|
\]
|
|
|
|
|
|
|
|
|
|
|
|
This is not commutative,
|
|
|
|
but associative and $a \mapsto a + b$ is continuous
|
|
|
|
for a fixed $b$.
|
|
|
|
This is called a left compact topological semigroup.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Let $X$ be a compact Hausdorff space
|
|
|
|
and let $T \colon X \to X$ be continuous.%
|
|
|
|
\footnote{Note that this need not be a homeomorphism, i.e.~we only get a $\N$-action
|
|
|
|
but not a $\Z$-action.}
|
|
|
|
|
|
|
|
For any $\cU \in \beta\N$, we define $T^{\cU}$ by
|
|
|
|
$T^\cU(x) \coloneqq \cU-\lim_n T^n(x)$ for $x \in X$.
|
|
|
|
|
|
|
|
For fixed $x$, the map $\cU \mapsto T^{\cU}(x)$ is continuous.
|
|
|
|
|
|
|
|
(More generally, for every $f\colon \N \to X$
|
|
|
|
the extension $\tilde{f}\colon \beta\N \to X$ is continuous).
|
|
|
|
|
|
|
|
Note that for fixed $\cU$, the map $x \mapsto T^\cU(x)$
|
|
|
|
is not necessarily continuous.
|
|
|
|
|
|
|
|
|
|
|
|
\begin{definition}
|
|
|
|
Let $X$ be a compact Hausdorff space
|
|
|
|
and $T\colon X\to X$ continuous.
|
|
|
|
A point $x \in X$ is \vocab{recurrent},
|
|
|
|
iff for every neighbourhood $G$ of $x$,
|
|
|
|
infinitely many $n$ satisfy $T^n(x) \in G$.
|
|
|
|
|
|
|
|
A point $x \in X$ is \vocab{uniformly recurrent},
|
|
|
|
if for every neighbourhood $G$ of $x$,
|
|
|
|
there exists $M \in \N$,
|
|
|
|
such that
|
|
|
|
\[
|
|
|
|
\forall n.~\exists k < M.~ T^{n+k}(x) \in G.
|
|
|
|
\]
|
|
|
|
|
|
|
|
\end{definition}
|
|
|
|
\begin{fact}
|
|
|
|
Let $\cU, \cV \in \beta\N$
|
|
|
|
and $T\colon X \to X$ continuous
|
|
|
|
for a compact Hausdorff space $X$.
|
|
|
|
Then $T^{\cU}(T^{\cV}(x)) = T^{\cU + \cV}(x)$.
|
|
|
|
\end{fact}
|
|
|
|
\begin{proof}
|
|
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
|
|
T^{\cU + \cV}(x) &=& (\cU + \cV)-\lim_k T^k(x)\\
|
|
|
|
&=& \cU-\lim_m \cV-\lim_n T^{m+n}(x)\\
|
|
|
|
&\overset{T^m \text{ continuous}}{=}& \cU-\lim_m T^m (\cV-\lim_n T^n(x))\\
|
|
|
|
&=& T^\cU(T^\cV(x)).
|
|
|
|
\end{IEEEeqnarray*}
|
|
|
|
\end{proof}
|
|
|
|
|
|
|
|
|
2024-01-23 10:57:14 +01:00
|
|
|
\todo{Homework: Check the details that were omitted during the lecture.}
|
2024-01-23 10:56:16 +01:00
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|