2023-11-13 00:23:51 +01:00
\lecture { 07} { 2023-11-07} { }
\begin { proposition}
Let $ X $ be second countable.
Then $ | \cB ( X ) | \le \fc $ .
% $\fc := 2^{\aleph_0}$
\end { proposition}
\begin { proof}
We use strong induction on $ \xi < \omega _ 1 $ .
We have $ \Sigma ^ 0 _ 1 ( X ) \le \fc $
(for every element of the basis, we can decide
whether to use it in the union or not).
Suppose that $ \forall \xi ' < \xi .~| \Sigma ^ 0 _ { \xi ' } ( X ) | \le \fc $ .
Then $ | \Pi ^ 0 _ { \xi ' } ( X ) | \le \fc $ .
We have that
\[
\Sigma ^ 0_ \xi (X) = \{ \bigcup _ { n} A_ n : n \in \N , A_ n \in \Pi ^ 0_ { \xi _ n} (X), \xi _ n < \xi \} .
2024-01-23 21:52:45 +01:00
\]
2023-11-13 00:23:51 +01:00
Hence $ | \Sigma ^ 0 _ \xi ( X ) | \le ( \overbrace { \aleph _ 0 } ^ { \mathclap { \{ \xi ': \xi ' < \xi \} \text { is countable~ ~ ~ ~ } } } \cdot \underbrace { \fc } _ { \mathclap { \text { inductive assumption } } } ) ^ { \overbrace { \aleph _ 0 } ^ { \mathclap { \text { countable unions } } } } $ .
We have
\[
\cB (X) = \bigcup _ { \xi < \omega _ 1} \Sigma ^ 0_ \xi (X).
2024-01-23 21:52:45 +01:00
\]
2023-11-13 00:23:51 +01:00
Hence
\[
|\cB (X)| \le \omega _ 1 \cdot \fc = \fc .
2024-01-23 21:52:45 +01:00
\]
2023-11-13 00:23:51 +01:00
\end { proof}
\begin { proposition} [Closure properties]
Suppose that $ X $ is metrizable.
Let $ 1 \le \xi < \omega _ 1 $ .
Then
\begin { enumerate} [(a)]
\item \begin { itemize}
\item $ \Sigma ^ 0 _ \xi ( X ) $ is closed under countable unions.
\item $ \Pi ^ 0 _ \xi ( X ) $ is closed under countable intersections.
2024-01-23 21:52:45 +01:00
\item $ \Delta ^ 0 _ \xi ( X ) $ is closed under complements.
2023-11-13 00:23:51 +01:00
\end { itemize}
\item \begin { itemize}
\item $ \Sigma ^ 0 _ \xi ( X ) $ is closed under \emph { finite} intersections.
\item $ \Pi ^ 0 _ \xi ( X ) $ is closed under \emph { finite} unions.
2024-01-23 21:52:45 +01:00
\item $ \Delta ^ 0 _ \xi ( X ) $ is closed under finite unions and
finite intersections.
2023-11-13 00:23:51 +01:00
\end { itemize}
\end { enumerate}
\end { proposition}
2024-01-23 21:52:45 +01:00
\gist { %
2023-11-13 00:23:51 +01:00
\begin { proof}
\begin { enumerate} [(a)]
2024-01-23 21:52:45 +01:00
\item This follows directly from the definition.
2023-11-13 00:23:51 +01:00
Note that a countable intersection can be written
as a complement of the countable union of complements:
\[
\bigcap _ { n} B_ n = \left ( \bigcup _ { n} B_ n^ { c} \right )^ { c} .
2024-01-23 21:52:45 +01:00
\]
2023-11-13 00:23:51 +01:00
\item If suffices to check this for $ \Sigma ^ 0 _ { \xi } ( X ) $ .
Let $ A = \bigcup _ { n } A _ n $ for $ A _ n \in \Pi ^ 0 _ { \xi _ n } ( X ) $
and $ B = \bigcup _ { m } B _ m $ for $ B _ m \in \Pi ^ 0 _ { \xi ' _ m } ( X ) $ .
Then
\[
A \cap B = \bigcup _ { n,m} \left ( A_ n \cap B_ m \right )
2024-01-23 21:52:45 +01:00
\]
2023-11-13 00:23:51 +01:00
and $ A _ n \cap B _ m \in \Pi ^ { 0 } _ { \max ( \xi _ n, \xi ' _ m ) } ( X ) $ .
\end { enumerate}
\end { proof}
2024-01-23 21:52:45 +01:00
} { }
2023-11-13 00:23:51 +01:00
\begin { example}
Consider the cantor space $ 2 ^ { \omega } $ .
We have that $ \Delta ^ 0 _ 1 ( 2 ^ { \omega } ) $
2024-01-23 21:52:45 +01:00
is not closed under countable unions%
\gist { (countable unions yield all open sets, but there are open
sets that are not clopen)} { } .
2023-11-13 00:23:51 +01:00
\end { example}
\subsection { Turning Borels Sets into Clopens}
2024-01-12 01:31:12 +01:00
\begin { theorem} %
2024-01-23 21:52:45 +01:00
\gist { %
2024-01-12 01:31:12 +01:00
\footnote { Whilst strikingly concise the verb ``\vocab [Clopenization™] { to clopenize} ''
unfortunately seems to be non-standard vocabulary.
Our tutor repeatedly advised against using it in the final exam.
Contrary to popular belief
the very same tutor was \textit { not} the one first to introduce it,
as it would certainly be spelled ``to clopenise'' if that were the case.
2024-01-23 21:52:45 +01:00
} %
} { } %
2023-11-13 00:23:51 +01:00
\label { thm:clopenize}
Let $ ( X, \cT ) $ be a Polish space.
For any Borel set $ A \subseteq X $ ,
2024-01-12 01:31:12 +01:00
there is a finer Polish topology,%
2023-11-13 00:23:51 +01:00
\footnote { i.e.~$ \cT _ A \supseteq \cT $ and $ ( X, \cT _ A ) $ is Polish}
such that
\begin { itemize}
\item $ A $ is clopen in $ \cT _ A $ ,
\item the Borel sets do not change,
i.e.~$ \cB ( X, \cT ) = \cB ( X, \cT _ A ) $ .
\end { itemize}
\end { theorem}
\begin { corollary} [Perfect set property]
Let $ ( X, \cT ) $ be Polish,
and let $ B \subseteq X $ be Borel and uncountable.
Then there is an embedding
of the cantor space $ 2 ^ { \omega } $
into $ B $ .
\end { corollary}
\begin { proof}
Pick $ \cT _ B \supset \cT $
such that $ ( X, \cT _ B ) $ is Polish,
$ B $ is clopen in $ \cT _ B $ and
$ \cB ( X, \cT ) = \cB ( X, \cT _ B ) $ .
Therefore $ ( \cB , \cT _ B \defon { B } ) $ is Polish.
We know that there is an embedding
$ f \colon 2 ^ { \omega } \to ( B, \cT _ { B } \defon { B } ) $ .
Consider $ f \colon 2 ^ { \omega } \to B \subseteq ( X, \cT ) $ .
This is still continuous as $ \cT \subseteq \cT _ B $ .
Since $ 2 ^ { \omega } $ is compact, $ f $ is an embedding.
%\todo{Think about this}
\end { proof}
\begin { refproof} { thm:clopenize}
We show that
\begin { IEEEeqnarray*} { rCl}
A \coloneqq \{ B \subseteq \cB (X, \cT )& :\exists & \cT _ B \supseteq \cT .\\
& & (X, \cT _ B) \text { is Polish} ,\\
& & \cB (X, \cT ) = \cB (X, \cT _ B)\\
& & B \text { is clopen in $ \cT _ B $ } \\
\}
\end { IEEEeqnarray*}
is equal to the set of Borel sets.
The proof rests on two lemmata:
\begin { lemma}
\label { thm:clopenize:l1}
Let $ ( X, \cT ) $ be a Polish space.
Then for any $ F \overset { \text { closed } } { \subseteq } X $ (wrt. $ \cT $ )
there is $ \cT _ F \supseteq \cT $
such that $ \cT _ F $ is Polish,
$ \cB ( \cT ) = \cB ( \cT _ F ) $
and $ F $ is clopen in $ \cT _ F $ .
\end { lemma}
\begin { proof}
Consider $ ( F, \cT \defon { F } ) $ and $ ( X \setminus F, \cT \defon { X \setminus F } ) $ .
Both are Polish spaces.
2024-01-12 01:44:05 +01:00
Take the coproduct%
\footnote { In the lecture, this was called the \vocab { topological sum} .}
$ F \oplus ( X \setminus F ) $ of these spaces.
2023-11-13 00:23:51 +01:00
This space is Polish,
and the topology is generated by $ \cT \cup \{ F \} $ ,
hence we do not get any new Borel sets.
\end { proof}
So all closed sets are in $ A $ .
Furthermore $ A $ is closed under complements,
since complements of clopen sets are clopen.
\begin { lemma}
\label { thm:clopenize:l2}
Let $ ( X, \cT ) $ be Polish.
Let $ \{ \cT _ n \} _ { n < \omega } $
be Polish topologies
such that $ \cT _ n \supseteq \cT $
and $ \cB ( \cT _ n ) = \cB ( \cT ) $ .
Then the topology $ \cT _ \infty $ generated by $ \bigcup _ { n } \cT _ n $
2024-01-23 21:52:45 +01:00
is Polish
2023-11-13 00:23:51 +01:00
and $ \cB ( \cT _ \infty ) = \cB ( T ) $ .
\end { lemma}
\begin { proof}
We have that $ \cT _ \infty $ is the smallest
topology containing all $ \cT _ n $ .
To get $ \cT _ \infty $
consider
\[
\cF \coloneqq \{ A_ 1 \cap A_ 2 \cap \ldots \cap A_ n : A_ i \in \cT _ i\} .
\]
Then
\[
\cT _ \infty = \{ \bigcup _ { i<\omega } B_ i : B_ i \in \cF \} .
\]
(It suffices to take countable unions,
since we may assume that the $ A _ 1 , \ldots , A _ n $ in the
definition of $ \cF $ belong to
a countable basis of the respective $ \cT _ n $ ).
2024-01-23 21:52:45 +01:00
% Proof was finished in lecture 8
Let $ Y = \prod _ { n \in \N } ( X, \cT _ n ) $ .
Then $ Y $ is Polish.
Let $ \delta \colon ( X, \cT _ \infty ) \to Y $
defined by $ \delta ( x ) = ( x,x,x, \ldots ) $ .
\begin { claim}
$ \delta $ is a homeomorphism.
\end { claim}
\begin { subproof}
Clearly $ \delta $ is a bijection.
We need to show that it is continuous and open.
Let $ U \in \cT _ i $ .
Then
\[
\delta ^ { -1} (D \cap \left ( X \times X \times \ldots \times U \times \ldots ) \right )) = U \in \cT _ i \subseteq \cT _ \infty ,
\]
hence $ \delta $ is continuous.
Let $ U \in \cT _ \infty $ .
Then $ U $ is the union of sets of the form
\[
V = U_ { n_ 1} \cap U_ { n_ 2} \cap \ldots \cap U_ { nu}
\]
for some $ n _ 1 < n _ 2 < \ldots < n _ u $
and $ U _ { n _ i } \in \cT _ i $ .
Thus is suffices to consider sets of this form.
We have that
\[
\delta (V) = D \cap (X \times X \times \ldots \times U_ { n_ 1} \times \ldots \times U_ { n_ 2} \times \ldots \times U_ { n_ u} \times X \times \ldots ) \overset { \text { open} } { \subseteq } D.
\]
\end { subproof}
This will finish the proof since
\[
D = \{ (x,x,\ldots ) \in Y : x \in X\} \overset { \text { closed} } { \subseteq } Y
\]
Why? Let $ ( x _ n ) \in Y \setminus D $ .
Then there are $ i < j $ such that $ x _ i \neq x _ j $ .
Take disjoint open $ x _ i \in U $ , $ x _ j \in V $ .
Then
\[ ( x _ n ) \in X \times X \times \ldots \times U \times \ldots \times X \times \ldots \times V \times X \times \ldots \]
is open in $ Y \setminus D $ .
Hence $ Y \setminus D $ is open, thus $ D $ is closed.
It follows that $ D $ is Polish.
2023-11-13 00:23:51 +01:00
\end { proof}
We need to show that $ A $ is closed under countable unions.
By \yaref { thm:clopenize:l2} there exists a topology
$ \cT _ \infty $ such that $ A = \bigcup _ { n < \omega } A _ n $ is open in $ \cT _ \infty $
and $ \cB ( \cT _ \infty ) = \cB ( \cT ) $ .
Applying \yaref { thm:clopenize:l1}
yields a topology $ \cT _ \infty ' $ such that
$ ( X, \cT _ \infty ' ) $ is Polish,
$ \cB ( \cT _ \infty ' ) = \cB ( \cT ) $
and $ A $ is clopen in $ \cT _ { \infty } ' $ .
\end { refproof}