Josia Pietsch
f20516fa8c
Some checks failed
Build latex and deploy / checkout (push) Has been cancelled
230 lines
8 KiB
TeX
230 lines
8 KiB
TeX
\lecture{20}{2024-01-15}{}
|
|
|
|
\begin{idea}
|
|
We want to add a new object that satisfies certain condition.
|
|
The elements of the forcing notion correspond to approximations
|
|
of this object.
|
|
|
|
A filter picks some information which we want to be true.
|
|
Being a filter ensures that this information does not contradict itself.
|
|
\end{idea}
|
|
|
|
\begin{definition}
|
|
Assume that $M$ is a transitive model of $\ZFC$,
|
|
and $\bP \in M$ a poset.
|
|
$G \subseteq \bP$ is said to be \vocab{$M$-generic for $\bP$}
|
|
if whenever $D \subseteq \bP$ is dense
|
|
and in $M$, then $G \cap D \neq \emptyset$.
|
|
\end{definition}
|
|
\begin{remark}
|
|
That is the same as being $\{D \subseteq \bP \text{ dense } : D \in M\}$-generic
|
|
with generic defined as in \yaref{def:forcingwords}.
|
|
\end{remark}
|
|
|
|
% \begin{remark}
|
|
% We can not prove that such a transitive model actually exists (we need inaccessible cardinals for that).
|
|
% However there are transitive models of finite fragments of $\ZFC$.
|
|
% % cf. Kuhnen, Chapter 7
|
|
% So proofs using tansitive models can be made more general by
|
|
% talking only about finite fragments, i.e.~a finite subset of the axioms of $\ZFC$ (since every proof can only
|
|
% use finitely many axioms).
|
|
% \end{remark}
|
|
|
|
\begin{definition}[Cohen Forcing]
|
|
\yalabel{Cohen Forcing}{Cohen Forcing}{def:cohenf}
|
|
Let $\bP$ be the set of finite partial function $p$ from $\omega$ to $2$,
|
|
i.e.~$\cP = 2^{<\omega}$.
|
|
|
|
The order on $\bP$ is described by $q \le p \colon\iff q \supseteq p$.
|
|
$\bP$ is called the \vocab{Cohen forcing}.
|
|
\end{definition}
|
|
\begin{fact}
|
|
Assume $X \subseteq 2^\omega$ is countable,
|
|
Then there is $x \in 2^\omega \setminus X$.
|
|
\end{fact}
|
|
Of course we already know that, but let's use it
|
|
to test our machinery:
|
|
\begin{proof}
|
|
Assume that $X = \{x_n \colon n \in \omega\}$
|
|
is an enumeration of $X$.
|
|
Let $D_n = \{ p \in \bP : \exists i \in \dom(\bP).~x_n(i) \neq p(i)\}$.
|
|
This makes sure that we get a ``new'' element
|
|
not belonging to $X$.
|
|
|
|
\begin{claim}
|
|
$D_n$ is dense in $\bP$.
|
|
\end{claim}
|
|
\begin{subproof}
|
|
Assume $q \in \bP$.
|
|
Let $i = 1 + \max(\dom(q))$.
|
|
Note that $i \not\in \dom(q)$.
|
|
Let $p = q \cup \{(i, 1-x_n(i))\}$.
|
|
Then $p \in D_n$.
|
|
\end{subproof}
|
|
Let $E_i = \{p \in \bP : i \in \dom(\bP)\}$.
|
|
This makes sure that our ``new'' element
|
|
is defined everywhere.
|
|
\begin{claim}
|
|
$\forall i < \omega.~E_i \subseteq \bP \text{ is dense}$.
|
|
\end{claim}
|
|
\begin{subproof}
|
|
Assume $q \in \bP$.
|
|
If $ i \in \dom(q)$ pick $p = q \in E_i$.
|
|
If $i \not\in \dom(q)$,
|
|
let $p = q \cup \{(i,0)\} \in E_i$.
|
|
\end{subproof}
|
|
Let $\cD = \{D_n : n < \omega\} \cup \{E_i : i < \omega\}$.
|
|
This is a countable subset of dense sets.
|
|
By \yaref{lem:egenfilter}
|
|
there is a $\cD$-generic filter $G$.
|
|
Let $y = \bigcup G$.
|
|
Note that $y$ is a function, since any two elements of $G$ are compatible.
|
|
\end{proof}
|
|
Note that the ``new'' element did already exists, so we used forcing language
|
|
to find it but didn't actually do anything.
|
|
|
|
\begin{lemma}
|
|
Let $M$ be a transitive model of $\ZFC$
|
|
and let $\bP = (P, \le ) \in M$.
|
|
|
|
Let $D \subseteq \bP$, $D \in M$, $p \in \bP$.
|
|
Then
|
|
\begin{enumerate}[(1)]
|
|
\item $\bP$ is a partial order iff $M \models \text{``$\bP$ is a partial order''}$.
|
|
\item $D$ is dense in $\bP$ iff $M \models \text{``$D$ is dense in $\bP$''}$.
|
|
\item $D$ is dense below $p$ iff $M \models \text{``$D$ is dense below $p$''}$
|
|
(this only makes sense if $p \in M$).
|
|
\end{enumerate}
|
|
\end{lemma}
|
|
\begin{proof}
|
|
All the definitions are $\Delta_0$, so we can apply
|
|
\yaref{lem:d0absolute}.
|
|
\end{proof}
|
|
|
|
\begin{definition}
|
|
Assume that $M$ is a transitive model of $\ZFC$
|
|
and $\bP \in M$ is a poset.
|
|
$G \subseteq \bP$ is called a
|
|
\vocab{$\bP$-generic filter over $M$}
|
|
or \vocab{$M$-generic filter for $\bP$}
|
|
if
|
|
\[
|
|
\forall D \in M.~((D \subseteq \bP \text{ is dense}) \implies G \cap D \neq \emptyset).
|
|
\]
|
|
\end{definition}
|
|
\begin{corollary}
|
|
If $M$ is a countable transitive model of $\ZFC$,
|
|
$\bP \in M$ is a poset
|
|
and $p \in \bP$,
|
|
then there is an $M$-generic filter $G \subseteq \bP$
|
|
with $p \in G$.
|
|
\end{corollary}
|
|
\begin{remark}
|
|
The filter usually exists outside of $M$.
|
|
$M$ itself does not think that $M$ is countable,
|
|
since $M \models \ZFC$.
|
|
But from the outside, we see that $M$ is countable,
|
|
so we can find a filter.
|
|
\end{remark}
|
|
|
|
\begin{definition}
|
|
Assume that $\bP$ is a poset.
|
|
$\bP$ is said to be \vocab{atomless}
|
|
if for all $p \in \bP$ there are $q,r \in \bP$
|
|
such that
|
|
\begin{enumerate}[(1)]
|
|
\item $q \le p$, $r \le p$,
|
|
\item $q \bot r$.
|
|
\end{enumerate}
|
|
\end{definition}
|
|
\begin{example}
|
|
The \yaref{def:cohenf} is atomless.
|
|
\end{example}
|
|
Usually we are only interested in atomless partial orders.
|
|
\begin{lemma}
|
|
Assume that $M$ is a transitive model of $\ZFC$,
|
|
$\bP \in M$ an atomless poset
|
|
and let $G \subseteq \bP$ be $M$-generic for $\bP$.
|
|
Then $G \not\in M$.
|
|
\end{lemma}
|
|
\begin{proof}
|
|
Towards a contradiction assume $G \in M$.
|
|
Define $D\coloneqq \bP \setminus G$.
|
|
We'll show that $D \subseteq \bP$ is dense,
|
|
which is a contradiction, since $G$ was assumed to be $M$-generic.
|
|
Let $q \in \bP$ and
|
|
let $r,s$ be two extensions of $q$
|
|
such that $r \bot s$.
|
|
These exist because $\bP$ is atomless.
|
|
Since $G$ is a filter,
|
|
it can contain at most one of $\{r,s\}$,
|
|
wlog.~$s \not\in G$.
|
|
In particular, $s \in D$ and $s \le q$.
|
|
Hence $D$ is dense in $\bP$.
|
|
\end{proof}
|
|
|
|
\begin{lemma}
|
|
Assume that $M$ is a transitive model of $\ZFC$,
|
|
$\bP \in M$ a poset, $G \subseteq \bP$ an $M$-generic filter
|
|
and $p \in G$.
|
|
|
|
If $D$ is dense below $p$,
|
|
then $G \cap D \neq \emptyset$.
|
|
\end{lemma}
|
|
\begin{proof}
|
|
Let $E = D \cup \{ q \in \bP : q \bot p\}$.
|
|
$E \subseteq \bP$ is dense:
|
|
Let $r \in \bP$.
|
|
\begin{itemize}
|
|
\item If $r || p$ let $s \le r,p$.
|
|
Since $D$ is dense below $p$,
|
|
there exists $\overline{s} \in D$ such that $\overline{s} \le s$.
|
|
Since $D \subseteq E$, $\overline{s} \in E$.
|
|
\item If $r \bot p$, then it is obvious that $r \in E$.
|
|
\end{itemize}
|
|
|
|
Since $E \in M$, $G \cap E \neq \emptyset$.
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
G \cap (D \cup \{q \in \bP : q \bot p\}) &\neq & \emptyset\\
|
|
\implies (G\cap D) \cup \underbrace{(G \cap \{q \in \bP : q \bot p\})}_{\emptyset} & \neq & \emptyset\\
|
|
\end{IEEEeqnarray*}
|
|
\end{proof}
|
|
|
|
\begin{definition}
|
|
Assume that $\bP$ is a poset.
|
|
\begin{enumerate}[(1)]
|
|
\item $A \subseteq \bP$ is said to be an \vocab{antichain}
|
|
iff for all $p \neq q$ in $A$,
|
|
$p \bot q$.
|
|
\item An antichain $A \subseteq \bP$ is a
|
|
\vocab{maximal antichain}
|
|
iff $\forall r \in \bP$, there exists $a \in \bP$
|
|
such that $p || r$.
|
|
\item $X \subseteq \bP$ is said to be \vocab{open}
|
|
if $\forall p \in X.~\forall q \le p.~ q \in X$.
|
|
\end{enumerate}
|
|
\end{definition}
|
|
\begin{remark}
|
|
Note that if $A$ is a maximal antichain
|
|
in $\bP$, then it is maximal in $(\{A \subseteq \bP : A \text{ is an antichain}\}, \subseteq )$.
|
|
Using $\AxC$, every antichain can be extend to a maximal antichain.
|
|
|
|
The statement ``$A$ is an antichain'' is $\Delta_0$.
|
|
|
|
Note that ``every antichain of $\bP$ is countable'' is not necessarily
|
|
absolute between transitive models of $\ZFC$.
|
|
|
|
\end{remark}
|
|
\begin{lemma}
|
|
Assume that $M$ is a transitive model of $\ZFC$,
|
|
$\bP \in M$ a poset and $G \subseteq \bP$ a filter.
|
|
Then the following are equivalent:
|
|
\begin{enumerate}[(1)]
|
|
\item $G$ is $\bP$-generic over $M$.
|
|
\item $G \cap A \neq \emptyset$ for every
|
|
maximal antichain $A \in M$.
|
|
\item $G \cap D \neq \emptyset$ for every dense
|
|
open $D \in M$ with $D \subseteq \bP$
|
|
\end{enumerate}
|
|
\end{lemma}
|
|
We'll prove this next time.
|