w23-logic-2/inputs/lecture_04.tex
Josia Pietsch e7baf0832b
Some checks failed
Build latex and deploy / checkout (push) Failing after 15m16s
small changes
2023-11-05 03:16:40 +01:00

148 lines
4.2 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\lecture{04}{}{ZFC}
% Model-theoretic concepts and ultraproducts
\section{$\ZFC$}
% 1900, Russel's paradox
\todo{Russel's Paradox}
$\ZFC$ stands for
\begin{itemize}
\item \textsc{Zermelo}s axioms (1905), % crises around 19000
\item \vocab{Fraenkel}'s axioms,
\item the axiom of choice.
\end{itemize}
\begin{notation}
We write $x \subseteq y$ as a shorthand
for $\forall z.~(z \in x \implies z \in y)$.
We write $x = \emptyset$ for $\lnot \exists y . y \in x$
and $x \cap y = \emptyset$ for $\lnot \exists z . ~(z \in x \land z \in y)$.
We use $x = \{y,z\}$
for
\[
y \in x \land z \in x \land \forall a .~(a \in x \implies a = y \lor a = z).
\]
Let $x = \bigcup y$ denote
\[
\forall z.~(z \in x \iff \exists v.(v \in y \land z \in v)).
\]
\end{notation}
$\ZFC$ consists of the following axioms:
\begin{axiom}[\vocab{Extensionality}]
\[
\forall x.~\forall y.~(x = y \iff \forall z.~(z \in x \iff z \in y)).
\]
Equivalent statements using $\subseteq$:
\[
\forall x.~\forall y.~(x = y \iff (x \subseteq y \land y \subseteq x)).
\]
\end{axiom}
\begin{axiom}[\vocab{Foundation}]
Every set has an $\in$-minimal member:
\[
\forall x .~ \left(\exists a .~(a\in x) \implies
\exists y .~ y \in x \land \lnot \exists z.~(z \in y \land z \in x)\right).
\]
Shorter:
\[
\forall x.~(x \neq \emptyset \implies \exists y \in x .~ x \cap y = \emptyset).
\]
\end{axiom}
\begin{axiom}[\vocab{Pairing}]
\[
\forall x .~\forall y.~ \exists z.~(z = \{x,y\}).
\]
\end{axiom}
\begin{remark}
Together with the axiom of pairing,
the axiom of foundation implies
that there can not be a set $x$ such that
$x \in x$:
Suppose that $x \in x$.
Then $x$ is the only element of $\{x\}$,
but $x \cap \{x\} \neq \emptyset$.
A similar argument shows that chains like
$x_0 \in x_1 \in x_2 \in x_0$
are ruled out as well.
\end{remark}
\begin{axiom}[\vocab{Union}]
\[
\forall x.~\exists y.~(y = \bigcup x).
\]
\end{axiom}
\begin{axiom}[\vocab{Powerset}]
We write $x = \cP(y)$
for
$\forall z.~(z \in x \iff x \subseteq z)$.
The powerset axiom (PWA) states
\[
\forall x.~\exists y.~y=\cP(x).
\]
\end{axiom}
\begin{axiom}[\vocab{Infinity}]
A set $x$ is called \vocab{inductive},
iff $\emptyset \in x \land \forall y.~(y \in x \implies y \cup \{y\} \in x)$.
The axiom of infinity says that there exists and inductive set.
\end{axiom}
\begin{axiomschema}[\vocab{Separation}]
% TODO :(Aus)
Let $\phi$ be some fixed
fist order formula in $\cL_\in$.
Then $\text{(Aus)}_{\phi}$
states
\[
\forall v_1 .~\forall v_p .~\forall a .~\exists b .~\forall x.~
(x \in b \implies x \in a \land \phi(x,v_1,v_p))
\]
Let us write $b = \{x \in a | \phi(x)\}$
for $\forall x.~(x \in b \iff x \in a \land f(x))$.
Then (Aus) can be formulated as
\[
\forall a.~\exists b.~(b = \{x \in a; \phi(x)\}).
\]
\end{axiomschema}
\begin{notation}
\todo{$\cap, \setminus, \bigcap$}
% We write $z = x \cap y$ for $\forall u.~((u \in z) \implies u \in x \land u \in y)$,
% $Z = x \setminus y$ for ...
% $x = \bigcap y$ for ...
\end{notation}
\begin{remark}
(Aus) proves that
\begin{itemize}
\item $\forall a.~\forall b.~\exists c.~(c = a \cap b)$,
\item $\forall a.~\forall b.~\exists c.~(c = a \setminus b)$,
\item $\forall a.~\exists b.~(b = \bigcap a)$.
\end{itemize}
\end{remark}
\begin{axiomschema}[\vocab{Replacement} (Fraenkel)]
Let $\phi$ be some $\cL_{\in }$ formula.
Then
\[
\forall v_1 .~\exists b.~\forall y.~(y \in b \iff \exists x .~(x \in a \land \phi(x,y,v_1,v_p))).
\]
\end{axiomschema}
\begin{axiom}[\vocab{Choice}]
Every family of non-empty sets has a \vocab{choice set}:
\begin{IEEEeqnarray*}{rCl}
\forall x .~&(&\\
&& ((\forall y \in x.~y \neq \emptyset) \land (\forall y \in x .~\forall y' \in x .~(y \neq y' \implies y \cap y' = \emptyset))\\
&& \implies\exists z.~\forall y \in x.~\exists u.~(z \cap y = \{u\})\\
&)&
\end{IEEEeqnarray*}
\end{axiom}
% TODO Hier weiter