w23-logic-2/inputs/lecture_04.tex
Josia Pietsch 26c32ce1bb
All checks were successful
Build latex and deploy / checkout (push) Successful in 1m13s
small fixes
2023-11-13 20:28:21 +01:00

155 lines
4.6 KiB
TeX
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

\lecture{04}{}{ZFC}
% Model-theoretic concepts and ultraproducts
\section{$\ZFC$}
% 1900, Russel's paradox
\todo{Russel's Paradox}
$\ZFC$ stands for
\begin{itemize}
\item \textsc{Zermelo}s axioms (1905), % crises around 19000
\item \textsc{Fraenkel}'s axioms,
\item the \yaref{ax:c}.
\end{itemize}
\begin{notation}
We write $x \subseteq y$ as a shorthand
for $\forall z.~(z \in x \implies z \in y)$.
We write $x = \emptyset$ for $\lnot \exists y . y \in x$
and $x \cap y = \emptyset$ for $\lnot \exists z . ~(z \in x \land z \in y)$.
We use $x = \{y,z\}$
for
\[
y \in x \land z \in x \land \forall a .~(a \in x \implies a = y \lor a = z).
\]
Let $x = \bigcup y$ denote
\[
\forall z.~(z \in x \iff \exists v.(v \in y \land z \in v)).
\]
\end{notation}
$\ZFC$ consists of the following axioms:
\begin{axiom}[\vocab{Extensionality}]
\yalabel{Axiom of Extensionality}{(Ext)}{ax:ext} % (AoE)
\[
\forall x.~\forall y.~(x = y \iff \forall z.~(z \in x \iff z \in y)).
\]
Equivalent statements using $\subseteq$:
\[
\forall x.~\forall y.~(x = y \iff (x \subseteq y \land y \subseteq x)).
\]
\end{axiom}
\begin{axiom}[\vocab{Foundation}]
\yalabel{Axiom of Foundation}{(Fund)}{ax:fund}
Every set has an $\in$-minimal member:
\[
\forall x .~ \left(\exists a .~(a\in x) \implies
\exists y .~ y \in x \land \lnot \exists z.~(z \in y \land z \in x)\right).
\]
Shorter:
\[
\forall x.~(x \neq \emptyset \implies \exists y \in x .~ x \cap y = \emptyset).
\]
\end{axiom}
\begin{axiom}[\vocab{Pairing}]
\yalabel{Axiom of Pairing}{(Pair)}{ax:pair} % AoP
\[
\forall x .~\forall y.~ \exists z.~(z = \{x,y\}).
\]
\end{axiom}
\begin{remark}
Together with the axiom of pairing,
the axiom of foundation implies
that there can not be a set $x$ such that
$x \in x$:
Suppose that $x \in x$.
Then $x$ is the only element of $\{x\}$,
but $x \cap \{x\} \neq \emptyset$.
A similar argument shows that chains like
$x_0 \in x_1 \in x_2 \in x_0$
are ruled out as well.
\end{remark}
\begin{axiom}[\vocab{Union}]
\yalabel{Axiom of Union}{(Union)}{ax:union} % Union (AoU)
\[
\forall x.~\exists y.~(y = \bigcup x).
\]
\end{axiom}
\begin{axiom}[\vocab{Power Set}]
\yalabel{Axiom of Power Set}{(Pow)}{ax:pow}
% (PWA)
We write $x = \cP(y)$
for
$\forall z.~(z \in x \iff x \subseteq z)$.
The power set axiom states
\[
\forall x.~\exists y.~y=\cP(x).
\]
\end{axiom}
\begin{axiom}[\vocab{Infinity}]
\yalabel{Axiom of Infinity}{(Inf)}{ax:inf}
A set $x$ is called \vocab{inductive},
iff $\emptyset \in x \land \forall y.~(y \in x \implies y \cup \{y\} \in x)$.
The axiom of infinity says that there exists and inductive set.
\end{axiom}
\begin{axiomschema}[\vocab{Separation}]
\yalabel{Axiom of Separation}{(Aus)}{ax:aus}
Let $\phi$ be some fixed
fist order formula in $\cL_\in$.
Then $\AxAus_{\phi}$
states
\[
\forall v_1 .~\forall v_p .~\forall a .~\exists b .~\forall x.~
(x \in b \implies x \in a \land \phi(x,v_1,v_p))
\]
Let us write $b = \{x \in a | \phi(x)\}$
for $\forall x.~(x \in b \iff x \in a \land f(x))$.
Then \AxAus can be formulated as
\[
\forall a.~\exists b.~(b = \{x \in a; \phi(x)\}).
\]
\end{axiomschema}
\begin{notation}
\todo{$\cap, \setminus, \bigcap$}
% We write $z = x \cap y$ for $\forall u.~((u \in z) \implies u \in x \land u \in y)$,
% $Z = x \setminus y$ for ...
% $x = \bigcap y$ for ...
\end{notation}
\begin{remark}
\AxAus proves that
\begin{itemize}
\item $\forall a.~\forall b.~\exists c.~(c = a \cap b)$,
\item $\forall a.~\forall b.~\exists c.~(c = a \setminus b)$,
\item $\forall a.~\exists b.~(b = \bigcap a)$.
\end{itemize}
\end{remark}
\begin{axiomschema}[\vocab{Replacement} (Fraenkel)]
\yalabel{Axiom of Replacement}{(Rep)}{ax:rep}
Let $\phi$ be some $\cL_{\in }$ formula.
Then
\[
\forall v_1 .~\exists b.~\forall y.~(y \in b \iff \exists x .~(x \in a \land \phi(x,y,v_1,v_p))).
\]
\end{axiomschema}
\begin{axiom}[\vocab{Choice}]
\yalabel{Axiom of Choice}{(C)}{ax:c}
Every family of non-empty sets has a \vocab{choice set}:
\begin{IEEEeqnarray*}{rCl}
\forall x .~&(&\\
&& ((\forall y \in x.~y \neq \emptyset) \land (\forall y \in x .~\forall y' \in x .~(y \neq y' \implies y \cap y' = \emptyset))\\
&& \implies\exists z.~\forall y \in x.~\exists u.~(z \cap y = \{u\})\\
&)&
\end{IEEEeqnarray*}
\end{axiom}