164 lines
4.7 KiB
TeX
164 lines
4.7 KiB
TeX
\lecture{01}{2023-10-16}{}
|
|
|
|
Literature
|
|
|
|
\begin{itemize}
|
|
\item Schindler, Set theory
|
|
\item K. Kunen
|
|
\item T.~Jech
|
|
\item A.~Kanamori, The higher infinite
|
|
\end{itemize}
|
|
|
|
\section*{Outline}
|
|
\begin{itemize}
|
|
\item Set theory
|
|
\begin{itemize}
|
|
\item Naive set theory
|
|
\item $\ZFC$
|
|
\item Ordinals and Cardinals
|
|
\item Models of set theory (in particular forcing)
|
|
\item Independence of $\CH$.
|
|
\end{itemize}
|
|
\end{itemize}
|
|
|
|
|
|
\section{Naive set theory}
|
|
|
|
\begin{definition}
|
|
Let $A \neq \emptyset$, $B$ be arbitrary sets.
|
|
We write $A \le B$ ($A$ is not bigger than $B$ )
|
|
iff there is an injection $f\colon A \hookrightarrow B$.
|
|
\end{definition}
|
|
\begin{lemma}
|
|
If $A \le B$,
|
|
then there is a surjection $g\colon B \twoheadrightarrow B$.
|
|
\end{lemma}
|
|
\begin{proof}
|
|
Fix $f\colon A \hookrightarrow B$.
|
|
If $f$ is also surjective, then $f^{-1}\colon B \to A$
|
|
is also a bijection.
|
|
Otherwise define $g$ by choosing an arbitrary $x_0 \in B$
|
|
and let
|
|
\[
|
|
g(y) \coloneqq \begin{cases}
|
|
x &: f(x) = y,\\
|
|
x_0 &: \text{if there is no such $x$}.
|
|
\end{cases}.
|
|
\]
|
|
\end{proof}
|
|
\begin{lemma}
|
|
If there is a surjection $f\colon A \twoheadrightarrow B$,
|
|
then $B \le A$.
|
|
\end{lemma}
|
|
\begin{proof}
|
|
For every $x \in B$ choose one of its preimages under $f$.
|
|
This is basically equivalent to $\AC$.
|
|
\end{proof}
|
|
|
|
\begin{definition}
|
|
For sets $A$, $B$
|
|
write $A < B$ iff $A \le B \land B \not\le A$.
|
|
\end{definition}
|
|
\begin{theorem}[Cantor]
|
|
$\N < \R$.
|
|
\end{theorem}
|
|
\begin{proof}[Cantor's original proof]
|
|
Clearly $\N \le \R$.
|
|
Take some function $f\colon \N \to \R$
|
|
|
|
Define a sequence $([a_n, b_n], n \in \N)$
|
|
of nonempty closed nested intervals,
|
|
i.e.~$a_n \le a_{n+1} < b_{n+1} \le b_n$
|
|
as follows:
|
|
Set $a_0 \coloneqq 0$, $b_0 \coloneqq 1$,
|
|
and $a_{n+1}$, $b_{n+1}$ such that $x_n \notin [a_{n+1}, b_{n+1}]$.
|
|
Then $\bigcap_{n \in \N} [a_n, b_n] \neq \emptyset$
|
|
since $\R$ is complete.
|
|
Thus $f$ is not surjective.
|
|
\end{proof}
|
|
|
|
\begin{notation}
|
|
For a set $A$,
|
|
$\bP(A)$ denotes the \vocab{power set} of $A$,
|
|
i.e.~the set of all subsets of $A$.
|
|
\end{notation}
|
|
\begin{theorem}
|
|
For all sets $A$, $A < \bP(A)$.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
Clearly $A \le \bP(A)$
|
|
since $A \ni a \mapsto \{a\} \in \bP(A)$ is an injection.
|
|
|
|
Let $f\colon A \to \bP(A)$, we want to show that this is not
|
|
surjective.
|
|
Let $c \coloneqq \{x \in A | x \not\in f(x)\} \in \bP(A)$.
|
|
Suppose that $f(x_0) = c$.
|
|
Then both $x_0 \in c$ and $x_0 \not\in c$
|
|
lead to a contradiction.
|
|
\end{proof}
|
|
|
|
\begin{definition}
|
|
For sets $A$, $B$
|
|
write $A \sim B$
|
|
for $A \le B$ and $B \le A$.
|
|
\end{definition}
|
|
|
|
\begin{theorem}[Schröder-Bernstein]
|
|
Let $A$, $B$ be any sets.
|
|
If $A \sim B$, there is a bijection $h\colon A \to B$.
|
|
\end{theorem}
|
|
\begin{proof}
|
|
Let $f\colon A \hookrightarrow B$ and $g\colon B \hookrightarrow A$
|
|
be injective.
|
|
We need to define a bijection $h\colon A \to B$.
|
|
For each $x \in A$ we define $N(x) \in \N \cup \{\infty\}$
|
|
and the maximal ``preimage sequence'' $(x_n : n < N(x))$
|
|
as follows:
|
|
$x_0 \coloneqq x$,
|
|
if $n + 1 < N$ and $n$ is even, then $x_n\coloneqq g(x_{n+1})$,
|
|
if it is odd, $x_n \coloneqq f(x_{n+1})$
|
|
and either $N = \infty$
|
|
or $x_{N-1}$ has no preimage under $f$ if $N-1$ is even,
|
|
resp.~$g$ if $N-1$ is odd.
|
|
|
|
|
|
Similarly for each $y \in B$
|
|
an $M = M(y) \in \N \cup \{\infty\}$
|
|
and the maximal preimage sequence $(y_n : n < M)$
|
|
can be defined.
|
|
|
|
Let $A^{\text{odd}} \coloneqq \{x \in A : N(x) \text{ is an odd natural number}\}$,
|
|
$A^{\text{even}} \coloneqq \{x \in A : N(x) \text{ is an even natural number}\}$,
|
|
$A^{\infty} \coloneqq \{x \in A : N(x) = \infty\}$
|
|
and similarly for $B$.
|
|
|
|
Now define
|
|
\begin{IEEEeqnarray*}{rCl}
|
|
h\colon A &\longrightarrow & B \\
|
|
x &\longmapsto &
|
|
\begin{cases}
|
|
f(x) &: x \in A^{\text{odd}} \cup A^{\infty},\\
|
|
g^{-1}(x) &: x \in A^{\text{even}}.
|
|
\end{cases}
|
|
\end{IEEEeqnarray*}
|
|
|
|
It is clear that this is bijective.
|
|
|
|
\todo{missing picture $f(A^{\text{odd}}) \subseteq B^{\text{even}}$, $f(A^\infty) = B^\infty$}.
|
|
\end{proof}
|
|
|
|
\begin{definition}
|
|
The \vocab{continuum hypothesis} ($\CH$ )
|
|
says that there is no set $A$ such that
|
|
$\N < A < \R$.
|
|
|
|
$\CH$ is equivalent to the statement that there is no set $A \subset \R$
|
|
which is uncountable ($\N < A$ )
|
|
and there is no bijection $A \leftrightarrow \R$.
|
|
\end{definition}
|
|
|
|
What we'll do next:
|
|
Define open and closed subsets of $\R$.
|
|
Show $\CH$ for open and closed sets.
|
|
|
|
|