\lecture{09}{2023-11-16}{} \begin{definition} Let $R$ be a binary relation. $R$ is called \vocab{well-founded} if for all classes $X$, there is an $R$-least $y$ such that there is no $z \in X$ with $(z,y) \in R$. \end{definition} \begin{theorem}[Induction (again, but now with classes)] Suppose that $R$ is a well-founded relation. Let $X$ be a class such that for all sets $x$, \[ \{y : (y,x) \in R\} \subseteq X \implies x \in X. \] Then $X$ contains all sets. \end{theorem} \begin{proof} Assume otherwise. Consider $Y = \{x : x \not\in X\} \neq \emptyset$. By hypothesis, there is some $x \in Y$ such that $(y,x) \not\in R$ for all $y \in Y$. In other words, if $(y,x) \not\in R$, then $x \not\in Y$, i.e.~$x \in X$. Thus $\{y: (y,x) \in R\} \subseteq X$. Hence $x \in X \lightning$. \end{proof} An alternative way of formulating this is \begin{theorem} Suppose $R$ is a well-founded binary relation on $A$, i.e.~$R \subseteq A \times A$. Suppose for all $\overline{A} \subseteq A$ is such that for all $x \in X$, \[ \{y \in A: (y,x) \in R\} \subseteq \overline{A} \implies x \in \overline{A}. \] Then $\overline{A} = A$. \end{theorem} \begin{definition} Let $R$ be a binary relation. $R$ is called \vocab{set-like} iff for all $x$, $\{y : (y,x) \in R\}$ is a set. \end{definition} \begin{theorem} \yalabel{Recursion Theorem}{recursion}{thm:recursion} Let $R$ be a well-founded and set-like relation on $A$ (i.e.~$R \subseteq A \times A$). Let $D$ be a class of triples such that for all $u,x$ there is exactly one $y$ with $(u,x,y) \in D$ (basically $(u,x) \mapsto y$ is a function). Then there is a unique function $f$ on $A$ such that for all $x \in A$, \[ (F\defon{ \{y \in A : (y,x) \in R\}}, x, F(x)) \in D\gist{,}{.} \] \gist{i.e.~$F(x)$ is computed from $F\defon{\{y \in A: (y,x) \in R\}}$.}{} \end{theorem} \begin{proof} \gist{% Uniqueness: Let $F, F'$ be two such functions. Suppose that $\overline{A} = \{ x \in A : F(x) \neq F'(x)\} \neq \emptyset$. As $R$ is well-founded, there is some $x \in \overline{A}$ such that $y \not\in \overline{A}$ for all $y \in A, (y,x) \in R$. I.e. $F(y) = F'(y)$ for all $y \in A$, $(y,x) \in R$. But then $F(x)$ is the unique $y$ with $(F\defon{\{z\colon (z,x) \in R\}}, x, y) \in D$, in particular it is the same as $F'(x) \lightning$ Existence: Let us call a (set) function $f$ \emph{good}, if \begin{itemize} \item $\dom(f) \subseteq A$, \item if $x \in \dom(f)$ and $y \in A, (y,x) \in R$, then $y \in \dom(f)$ and \item for all $x \in \dom(f)$ : \[ (f\defon{\{y \in A: (y,x) \in R\}}, x, f(x)) \in D. \] \end{itemize} By the proof of uniqueness, we have that all good functions are coherent, i.e.~$f(x) = f'(x)$ for good functions $f,f'$ and all $x \in \dom(f) \cap \dom(f')$. We may now let $F = \bigcup \{f: f \text{ is good}\}$, this exists by comprehension. If $x \in \dom(F)$ and $y \in A$ with $(y,x) \in R$, then $y \in \dom(F)$ and \[(F\defon{\{y : (y,x) \in R\}}, x,F(x)) \in D.\] We need to show that $\dom(F) = A$. This holds by induction: Suppose for a contradiction that $A \setminus \dom(F) \neq \emptyset$. Then there exists an $R$-least element $x$ in this set, i.e.$x \not\in \dom(F)$, but $y \in \dom(F)$ for all $(y,x) \in R$. For each $y \in A$ with $(y,x) \in R$, pick some good function $f_y$ with $y \in \dom(f_y)$ Since $R$ is set-like, we have that $f = \bigcup_y f_y$ is a good function. But then $f \cup (x,z)$, where $z$ is unique such that $(f\defon{\{y : (y,x) \in R\}}, x, z) \in D$, is good $\lightning$. }{ \begin{itemize} \item Uniqueness: Consider $\overline{A} \coloneqq \{x \in A : F(x) \neq F'(x)\}$ for two such functions. If $\overline{A} \neq \emptyset$, there is a minimal element $\lightning$. \item Existence: \begin{itemize} \item call set-function $f$ \emph{good} iff: \begin{itemize} \item $\dom(f) \subseteq A$, \item $x \in \dom(f), y <_R x \implies y \in \dom(f)$, \item $\forall x \in \dom(f).~(f\defon{\{y \in A : y <_R x\}}, x, f(x)) \in D$. \end{itemize} \item $F \coloneqq \bigcup \{f : f \text{ good}\}$ (comprehension) \item $\dom F = A$ (induction). \end{itemize} \end{itemize} } \end{proof}