\lecture{22}{2024-01-22}{More Forcing} \begin{warning}+ Forcing will not be relevant for the exam. Because of a lack of time, this is more of an outlook than a thorough presentation of the material. \end{warning} For the rest of the section, let us fix a transitive model $M$ of $\ZFC$ a partial order $\mathbb{P}$ and an $M$-generic filter $g$. \begin{definition}[$\mathbb{P}$-names] For an ordinal $\alpha \in M$% \footnote{Recall that $\Ord_M = \Ord \cap M$.}, let $M^{\mathbb{P}}_\alpha$, the \vocab{$\mathbb{P}$-names} in $M$ of rank $\le \alpha$, be defined as follows: \[ \tau \in M_{\alpha}^{\mathbb{P}} :\iff \tau \in M \land \tau \subseteq \mathbb{P} \times \bigcup \{M_\beta^{\mathbb{P}}: \beta < \alpha\}, \] i.e.~the elements of $\tau \in M_\alpha^{\mathbb{P}}$ are of the form $(p, \sigma)$, where $p \in \cP$ and $\sigma \in M^{\mathbb{P}}_\beta$ for some $\beta < \alpha$. Finally $M^{\mathbb{P}} = \bigcup \{M_\alpha^{\mathbb{P}} : \alpha \in M\}$. \end{definition} Let $R$ be the relation on $M^{\mathbb{P}}$ defined by $\sigma R \tau$ iff $\exists p \in \mathbb{P}.~(p,\sigma) \in \tau$. If $\tau \in M^\mathbb{P}$ and $(p, \sigma) \in \tau$, then $\sigma \in \{p, \sigma\} \in (p,\sigma) \in \tau$, so the relation $R$ is well founded. \begin{definition} Let $\tau \in M_\alpha^{\mathbb{P}}$. Then $\tau^g$, the \vocab{$g$-interpretation of $\tau$}, is defined to be \[ \{\sigma^g : \exists p \in g .~(p,\sigma) \in \tau\}. \] \end{definition} \begin{definition} $M[g]$, the forcing extension of $M$ given by $g$, is \[ \{ \tau^g : \tau \in M^{\mathbb{P}}\} . \] \end{definition} \begin{lemma} $M[g]$ is transitive. \end{lemma} \begin{proof} Trivial! \end{proof} \begin{lemma} $M \cup \{g\} \subseteq M[g]$. \end{lemma} \begin{proof} For all $x \in M$ we need to find a name \vocab{$\check{x}$} such that $\check{x}^g = x$. We can recursively (along $\in$) define \[ \check{x} = \{(p, \check{y}) : p \in \mathbb{P} \land y \in x\}. \] By induction, $\check{x} \in M$ for all $x \in M$. \begin{claim} $\check{x}^g = x$. \end{claim} \begin{subproof} Recall that $\mathbb{P} \neq \emptyset$. Inductively, we get \begin{IEEEeqnarray*}{rCl} \check{x}^g &=& \{\check{y}^g : \exists p \in g.~(p,\check{y}) \in \check{x}\}\\ &\overset{\text{induction}}{=}& \{y : \exists p \in g.~(p,\check{y}) \in \check{x}\}\\ &\overset{\text{definition of $\check{x}$}}{=}& \{y : y \in x\} = x. \end{IEEEeqnarray*} \end{subproof} So $M \subseteq M[g]$. We also need a name for $g$. Let \vocab{$\dot{g}$}$ \coloneqq \{(p, \check{p}) : p \in \mathbb{P}\}$. Indeed \begin{IEEEeqnarray*}{rCl} \dot{g}^g &=& \{\check{p}^g : \exists p \in g.~(p, \check{p}) \in \dot{g}\}\\ &=& \{p : p \in g\} = g. \end{IEEEeqnarray*} \end{proof} \begin{lemma} \label{lem:mgmodelexfundinfpairunion} $M[g] \models \AxExt, \AxFund, \AxInf, \AxPair, \AxUnion$. \end{lemma} \begin{proof} \begin{itemize} \item \AxExt: The formula $\forall x.~\forall y .~((\forall z \in x.~z \in y \land \forall z \in y.~z \in x) \to x = y)$ is $\Pi_1$, hence it is true in $M[g]$ by %TODO REF downward absolutenes. \item \AxFund: Again, \[ \forall x.~(\exists y \in x .~y = y \to \exists y \in x.~\forall z \in y.~z \not\in x) \] is $\Pi_1$. \item \AxInf can be written as \[ \exists x .~(\underbrace{\neq \in x \land \forall y \in x.y \cup \{y\} \in x}_{\Sigma_0}). \] We have $ \omega \in M \subseteq M[g]$, so $M[g] \models \AxInf$. \item \AxPair: Let us assume $x,y \in M[g]$, say $x = \tau^g$ and $y = \sigma^g$. Let $\pi = \{(p,\tau) : p \in \mathbb{P} \} \cup \{(p,\sigma) : p \in \mathbb{P}\} \in M^{\mathbb{P}}$. Then $\pi^g = \{\tau^g, \sigma^g\} = \{x,y\}$, so $\{x,y\} \in M[g]$. As a $\cL_\in$-statement, $z = \{x,y\}$ is $\Sigma_0$, so $M[g] \models \text{``$\{x,y\}$ is the pair of $x$ and $y$''}$. Hence $M[g] \models \AxPair$. \item \AxUnion: Similar to \AxPair.\gist{\todo{Exercise}}{} \end{itemize} \end{proof} Still missing are \begin{itemize} \item \AxPow, \item \AxAus, \item \AxRep, \item \AxC. \end{itemize} \begin{definition}[\vocab{Forcing relation}] Let $M$ be a countable transitive model of $\ZFC$ and let $\mathbb{P} \in M$ be a partial order. Let $p \in \mathbb{P}$ and let $\phi$ be a $\cL_{\in }$-formula. Let $\tau_1,\ldots, \tau_k \in M^{\mathbb{P}}$ be names. We say that $p$ \vocab[force]{forces} $\phi(\tau_1,\ldots, \tau_k)$, \[ p \Vdash^{\mathbb{\cP}}_{M} \phi(\tau_1, \ldots, \tau_k), \] if for all $h \subseteq \mathbb{P}$ which are $\mathbb{P}$-generic over $M$ with $p \in h$, \[ M[h] \models\phi(\tau_1^h, \ldots, \tau_k^h). \] \end{definition} \begin{theorem} Fix an $\cL_\in$-formula $\phi$. Then the relation \[ R = \{(p,\tau_1,\ldots,\tau_k : p \Vdash ^{\mathbb{P}}_M \phi(\tau_1,\ldots,\tau_k)\} \] is definable over $M$ (in the parameter $\mathbb{P}$). \end{theorem} \begin{proof} Omitted. \end{proof} \begin{theorem}[\vocab{Forcing Theorem}] Let $M$, $\mathbb{P}$, $g$, be as above, let $\phi$ be a formula, and let $\tau_1, \ldots, \tau_k \in M^{\mathbb{P}}$. Then the following are equivalent: \begin{enumerate}[(1)] \item $M[g] \models \phi(\tau_1^g, \ldots, \tau_k^g)$. \item There is some $p \in g$ with \[ p \Vdash^{\mathbb{P}}_M \phi(\tau_1,\ldots, \tau_k). \] \end{enumerate} \end{theorem} \begin{proof} Omitted. \end{proof} \begin{theorem} $M[g] \models \ZFC$. \end{theorem} \begin{proof} We have already shown a part of this in \yaref{lem:mgmodelexfundinfpairunion}. Let us show that $M[g] \models \AxAus$, the rest is similar and left as an exercise.% \footnote{or done next semester in Logic IV!} Let $\phi$ be a formula, let $a, x_1,\ldots,x_k \in M[g]$. We need to see \[M[g] \models \exists y.~y = \{z \in a : \phi(z, x_1,\ldots,x_k)\}.\] If suffices to show that there is some $y \in M[g]$ with $y = \{ z \in a : M[g] \models \phi(z, x_1,\ldots,x_k)\}$. For this, let us construct a name for $y$. Let $a = \tau^g$, $x_i = \sigma_i^g$. Let \[ \pi = \{(p,\rho) : \exists \overline{p} > p.~(\overline{p}, \rho) \in \tau \land p \Vdash^{\mathbb{P}}_M \phi(\rho, \sigma_1, \ldots, \sigma_k)\}. \] We have $\pi \in M$, since the relation $ \Vdash^{\mathbb{P}}_M$ can be defined in $M$. Let $z \in a$ such that $M[g] \models \phi(z, x_1,\ldots,x_n)$. We have $z = \rho^g$ for some $\rho$ and there is $\overline{p} \in g$ with $(\overline{p}, \rho) \in \pi$. Now $M[g] = \phi(\rho^g, \sigma_1^g,\ldots\sigma_k^g)$. Let $p' \Vdash^{\mathbb{P}}_M \phi(\rho, \sigma_1,\ldots, \sigma_k)$, where $p' \in g$. We have $p', \overline{p} \in g$, so there is some $p \le p', \overline{p}$ with $p \in g$. Then $(p,\rho) \in \pi$, so $\rho^g \in \pi^g$. This shows that \[ \{z \in a : M[g] \models \phi(z,x_1,\ldots,x_k)\} \subseteq \pi^g. \] The other inclusion is easy. \end{proof}