\lecture{03}{2023-10–23}{Cantor-Bendixson} \begin{theorem}[Cantor-Bendixson] \yaref{thm:cantorbendixson}{Cantor-Bendixson}{Cantor-Bendixson} If $A \subseteq \R$ is closed, it is either at most countable or else $A$ contains a perfect set. \end{theorem} \begin{corollary} If $A se \R$ is closed, then either $A \le \N$ or $A \sim \R$. \end{corollary} \begin{fact} $A' = \{x \in \R | \forall a < x < b.~ (a,b) \cap A \text{ is at least countable}\}$. \end{fact} \begin{proof} $\supseteq$ is clear. For $\subseteq $, fix $a < x < b$ and let us define $(y_n: n \in \omega)$ as well as $((a_n, b_n): n \in \omega)$. % TODO \end{proof}