\lecture{04}{}{ZFC} % Model-theoretic concepts and ultraproducts \section{\texorpdfstring{$\ZFC$}{ZFC}} % 1900, Russel's paradox % \todo{Russel's Paradox} $\ZFC$ stands for \begin{itemize} \item \textsc{Zermelo}’s axioms (1905), % crises around 19000 \item \textsc{Fraenkel}'s axioms, \item the \yaref{ax:c}. \end{itemize} \begin{notation} We write $x \subseteq y$ as a shorthand for $\forall z.~(z \in x \implies z \in y)$. We write $x = \emptyset$ for $\lnot \exists y . y \in x$ and $x \cap y = \emptyset$ for $\lnot \exists z . ~(z \in x \land z \in y)$. We use $x = \{y,z\}$ for \[ y \in x \land z \in x \land \forall a .~(a \in x \implies a = y \lor a = z). \] We write $z = x \cap y$ for \[\forall u.~((u \in z) \implies u \in x \land u \in y),\] $z = x \cup y$ for \[ \forall u.~((u \in z) \iff (u \in x \lor u \in y)), \] $z = \bigcap x$ for \[ \forall u.~((u \in z) \iff (\forall v.~(v \in x \implies u \in v))), \] $z = \bigcup x$ for \[ \forall u.~((u \in z) \iff \exists v.~(v \in x \land u \in v)) \] and $z = x \setminus y$ for \[ \forall u.~((u \in z) \iff (u \in x \land u \not\in y)). \] \end{notation} $\ZFC$ consists of the following axioms: \begin{axiom}[\vocab{Extensionality}] \yalabel{Axiom of Extensionality}{(Ext)}{ax:ext} % (AoE) \[ \forall x.~\forall y.~(x = y \iff \forall z.~(z \in x \iff z \in y)). \] Equivalent statements using $\subseteq$: \[ \forall x.~\forall y.~(x = y \iff (x \subseteq y \land y \subseteq x)). \] \end{axiom} \begin{axiom}[\vocab{Foundation}] \yalabel{Axiom of Foundation}{(Fund)}{ax:fund} Every set has an $\in$-minimal member: \[ \forall x .~ \left(\exists a .~(a\in x) \implies \exists y .~ y \in x \land \lnot \exists z.~(z \in y \land z \in x)\right). \] Shorter: \[ \forall x.~(x \neq \emptyset \implies \exists y \in x .~ x \cap y = \emptyset). \] \end{axiom} \begin{axiom}[\vocab{Pairing}] \yalabel{Axiom of Pairing}{(Pair)}{ax:pair} % AoP \[ \forall x .~\forall y.~ \exists z.~(z = \{x,y\}). \] \end{axiom} \begin{remark} Together with the axiom of pairing, the axiom of foundation implies that there can not be a set $x$ such that $x \in x$: Suppose that $x \in x$. Then $x$ is the only element of $\{x\}$, but $x \cap \{x\} \neq \emptyset$. A similar argument shows that chains like $x_0 \in x_1 \in x_2 \in x_0$ are ruled out as well. \end{remark} \begin{axiom}[\vocab{Union}] \yalabel{Axiom of Union}{(Union)}{ax:union} % Union (AoU) \[ \forall x.~\exists y.~(y = \bigcup x). \] \end{axiom} \begin{axiom}[\vocab{Power Set}] \yalabel{Axiom of Power Set}{(Pow)}{ax:pow} % (PWA) We write $x = \cP(y)$ for $\forall z.~(z \in x \iff z \subseteq x)$. The power set axiom states \[ \forall x.~\exists y.~y=\cP(x). \] \end{axiom} \begin{axiom}[\vocab{Infinity}] \yalabel{Axiom of Infinity}{(Inf)}{ax:inf} A set $x$ is called \vocab{inductive}, iff $\emptyset \in x \land \forall y.~(y \in x \implies y \cup \{y\} \in x)$. The axiom of infinity says that there exists and inductive set. \end{axiom} \begin{axiomschema}[\vocab{Separation}] \yalabel{Axiom of Separation}{(Aus)}{ax:aus} Let $\phi$ be some fixed fist order formula in $\cL_\in$ with free variables $x, v_1, \ldots, v_p$. Let $b$ be a variable that is not free in $\phi$. Then $\AxAus_{\phi}$ states \[ \forall v_1 .~\forall v_p .~\forall a .~\exists b .~\forall x.~ (x \in b \implies x \in a \land \phi(x,v_1,v_p)) \] Let us write $b = \{x \in a | \phi(x)\}$ for $\forall x.~(x \in b \iff x \in a \land f(x))$. Then \AxAus can be formulated as \[ \forall a.~\exists b.~(b = \{x \in a | \phi(x)\}). \] \end{axiomschema} \begin{remark} \AxAus proves that \begin{itemize} \item $\forall a.~\forall b.~\exists c.~(c = a \cap b)$, \item $\forall a.~\forall b.~\exists c.~(c = a \setminus b)$, \item $\forall a.~\exists b.~(b = \bigcap a)$. \end{itemize} \end{remark} \begin{axiomschema}[\vocab{Replacement} (Fraenkel)] \yalabel{Axiom of Replacement}{(Rep)}{ax:rep} Let $\phi$ be some $\cL_{\in }$ formula with free variables $x, y$.\todo{Allow more variables} Then \[ \forall x \in a.~\exists !y \phi(x,y) \implies \exists b.~\forall x \in a.~\exists y \in b.~\phi(x,y). % \forall v_1 \ldots \forall v_p .~\forall x.~ \exists y'.~\forall y.~(y = y' \iff \phi(x)) % \implies \forall a.~\exists b.~\forall y.~(y \in b \iff \exists x.~(x \in a \land \phi(x)) \] \end{axiomschema} \begin{axiom}[\vocab{Choice}] \yalabel{Axiom of Choice}{(C)}{ax:c} Every family of pairwise disjoint non-empty sets has a \vocab{choice set}: \begin{IEEEeqnarray*}{rCl} \forall x .~&(&\\ && ((\forall y \in x.~y \neq \emptyset) \land (\forall y \in x .~\forall y' \in x .~(y \neq y' \implies y \cap y' = \emptyset)))\\ && \implies\exists z.~\forall y \in x.~\exists u.~(z \cap y = \{u\})\\ &)& \end{IEEEeqnarray*} \end{axiom}