\lecture{07}{2023-11-09}{} \begin{lemma}+ By the axiom of foundation there cannot exist infinite descending chains $x_1 \ni x_2 \ni x_3 \ni \ldots$ \end{lemma} \begin{proof} \todo{TODO!} \end{proof} \begin{notation} From now on, we will write $\alpha, \beta, \ldots$ for ordinals. \end{notation} \begin{lemma} \label{lem:7:ordinalfacts} \begin{enumerate}[(a)] \item $0$ is an ordinal, and if $\alpha$ is an ordinal, so is $\alpha + 1$. \item If $\alpha$ is an ordinal and $x \in a$, then $x$ is an ordinal. \item If $\alpha, \beta$ are ordinals and $\alpha \subseteq \beta$, then $\alpha = \beta$ or $\alpha \in \beta$. \item If $\alpha$ and $\beta$ are ordinals, then $\alpha \in \beta$, $\alpha = \beta$ or $\alpha \ni \beta$. \end{enumerate} \end{lemma} \begin{refproof}{lem:7:ordinalfacts} We have already proved (a) before. (b) Fix $x \in \alpha$. Then $x \subseteq \alpha$. So if $y, z \in x$, then $y \in z \lor y = z \lor y \ni z$. Let $y \in x$. We need to see $y \subseteq x$. Let $z \in y$. \begin{claim} $z \in x$ \end{claim} \begin{subproof} As $\alpha$ is transitive, we have that $z, y, x \in \alpha$. Thus $z \in x \lor z = x \lor z \ni x$. $z = x$ contradicts \AxFund: Consider $\{x,y\}$. Then $x \cap \{x,y\}$ is non empty, as it contains $y$. Furthermore $x \in y \cap \{x,y\} $ $z \ni x$ also contradicts \AxFund: If $x \in z$, then $z \ni x \ni y \ni z \ni x \ni \ldots$. $\{x,y,z\}$ yields a contradiction, as $y \in x \cap \{x,y,z\}$, $z \in y \cap \{x,y,z\}$, $x \in z \cap \{x,y,z\}$. So $z \in x$ as desired. \end{subproof} (c) Say $\alpha \subsetneq \beta$. Pick $\xi \in \beta \setminus \alpha$ such that $\eta \in \alpha$ for every $\eta \in\xi \cap \beta$. (This exists by \AxFund). We want to see that $\xi = \alpha$. We have $\xi \subseteq \alpha$ by the choice of $\xi$. On the other hand $\alpha \subseteq \xi$: Let $\eta \in \alpha \subseteq \beta$. We have that $\eta \in \xi \lor \eta = \xi \lor \eta \ni \xi$. If $\xi \in \eta$, then since $\eta \in \alpha$, we get $\xi \in \alpha$ contradicting the choice of $\xi$. If $\xi = \eta$, the $\xi = \eta \in \alpha$, which also is a contradiction. Thus $\eta \in \xi$. This yields $\alpha \in \beta$, hence $\alpha$ is an ordinal. (d) By (c) if $\alpha$ and $\beta$ are ordinals, then $\alpha \subseteq \beta \iff (\alpha = \beta \lor \alpha \in \beta)$. We need tho see that if $ \alpha$, $\beta$ are ordinals, then $\alpha \subseteq \beta$ or $\beta \subseteq \alpha$. Suppose there are ordinals $\alpha$, $\beta$ such that this is not the case. Pick such an $\alpha$. Let $\alpha_0 \in \alpha \cup \{\alpha\}$ be such that there is some $\beta$ with $\lnot( \beta \subseteq \alpha_0 \lor \alpha_0 \subseteq \beta)$ for for all $\gamma \in \alpha_0$, $\forall \beta. ( \beta \subseteq \gamma \lor \gamma \subseteq \beta)$. Pick $\beta_0$ such that \[ \lnot \left( \beta_0 \subseteq \alpha_0 \lor \alpha_0 \subseteq \beta_0 \right). \] Consider $\alpha_0 \cup \beta_0$. \begin{claim} $\alpha_0 \cup \beta_0$ is an ordinal. \end{claim} \begin{subproof} $\alpha_0 \cup \beta_0$ is clearly transitive. Let $\gamma,\delta \in \alpha_0 \cup \beta_0$. We claim that $\gamma \in \delta \lor \gamma = \delta \lor \gamma \in \delta$. This can only fail if $\gamma \in \alpha_0$ and $\delta \in \beta_0$ (or the other way around). But then $\gamma \in \delta \lor \gamma = \delta \lor \delta \in \gamma$ by the choice of $\alpha_0$. \end{subproof} \begin{claim} $\alpha_0 = \alpha_0 \cup \beta_0$ or $\beta_0 = \alpha_0 \cup \beta_0$. \end{claim} \begin{subproof} If that is not the case, then $\alpha_0 \in \alpha_0 \cup \beta_0$ and $\beta_0 \in \alpha_0 \cup \beta_0$. $\alpha_0 \in \alpha_0$ violates \AxFund. Hence $\alpha_0 \in \beta_0$. By the same argument, $\beta_0 \in \alpha_0$. But this violates \AxFund, as $\alpha_0 \in \beta_0 \in \alpha_0$. \end{subproof} \end{refproof} \begin{lemma} Let $X$ be a set of ordinals, $X \neq \emptyset$. Then $\bigcap X$ and $\bigcup X$ are ordinals. \end{lemma} \begin{proof} Easy. \end{proof} It is actually the case that $\bigcap X \in X$: Pick $\alpha \in X$ such that $\alpha \subseteq \beta$ for all $\beta \in X$. This exists by \AxFund and since all ordinals are comparable. Then $\alpha = \bigcap X$. \begin{notation} We write $\min(X)$ for $\bigcap X$ and $\sup(X)$ for $\bigcup X$. \end{notation} It need not be the case that $\bigcup X \in X$, for example $\bigcup \omega = \omega$. % but $\bigcup 2 = 1$. \begin{definition} An ordinal $\alpha$ is called a \vocab[Ordinal!successor]{successor ordinal}, iff $\alpha = \beta \cup \{\beta\}$ for some $\beta \in \alpha$. Otherwise $\alpha$ is called a \vocab[Ordinal!limit]{limit ordinal}. \end{definition} \begin{observe} Note that $\alpha$ is a limit ordinal iff for all $\beta \in \alpha$, $\beta + 1 \in \alpha$: If there is $\beta \in \alpha$ such that $\beta+1 \not\in \alpha$, then either $\alpha = \beta+1$ (i.e.~$\alpha$ is a successor) or $\alpha \in \beta+1$, in which case $\beta \in \alpha \in \beta \cup \{\beta\} \lightning$. Also if $\alpha$ is a successor, then by definition there is some $\beta \in \alpha$, with $\beta + 1 = \alpha$, so $\beta + 1 \not\in \alpha$. \end{observe} \begin{notation} If $\alpha, \beta$ are ordinals, we write $\alpha < \beta$ for $\alpha \in \beta$ (equivalently $\alpha \subsetneq \beta$). We also write $\alpha \le \beta$ for $\alpha \in \beta \lor \alpha = \beta$ (i.e.~$\alpha \subseteq \beta$). \end{notation} \begin{example} Limit ordinals: \begin{itemize} \item $0$, \item $\omega$, \item $\omega + \omega = \sup(\omega \cup \{\omega, \omega + 1, \ldots\})$,% \footnote{To show that this exists, we need the recursion theorem and replacement.} $\omega + \omega + \omega, \omega + \omega + \omega + \omega, \ldots$ \end{itemize} Successor ordinals: \begin{itemize} \item $1 = \{0\}, 2 = \{0,1\}, 3, \ldots$ \item $\omega +1 = \omega \cup \{\omega\} , \omega + 2, \ldots$, \end{itemize} \end{example}