\lecture{04}{}{ZFC} % Model-theoretic concepts and ultraproducts \section{$\ZFC$} % 1900, Russel's paradox \todo{Russel's Paradox} $\ZFC$ stands for \begin{itemize} \item \textsc{Zermelo}’s axioms (1905), % crises around 19000 \item \vocab{Fraenkel}'s axioms, \item the axiom of choice. \end{itemize} \begin{notation} We write $x \subseteq y$ as a shorthand for $\forall z.~(z \in x \implies z \in y)$. We write $x = \emptyset$ for $\lnot \exists y . y \in x$ and $x \cap y = \emptyset$ for $\lnot \exists z . ~(z \in x \land z \in y)$. We use $x = \{y,z\}$ for \[ y \in x \land z \in x \land \forall a .~(a \in x \implies a = y \lor a = z). \] Let $x = \bigcup y$ denote \[ \forall z.~(z \in x \iff \exists v.(v \in y \land z \in v)). \] \end{notation} $\ZFC$ consists of the following axioms: \begin{axiom}[\vocab{Extensionality}] \[ \forall x.~\forall y.~(x = y \iff \forall z.~(z \in x \iff z \in y)). \] Equivalent statements using $\subseteq$: \[ \forall x.~\forall y.~(x = y \iff (x \subseteq y \land y \subseteq x)). \] \end{axiom} \begin{axiom}[\vocab{Foundation}] Every set has an $\in$-minimal member: \[ \forall x .~ \left(\exists a .~(a\in x) \implies \exists y .~ y \in x \land \lnot \exists z.~(z \in y \land z \in x)\right). \] Shorter: \[ \forall x.~(x \neq \emptyset \implies \exists y \in x .~ x \cap y = \emptyset). \] \end{axiom} \begin{axiom}[\vocab{Pairing}] \[ \forall x .~\forall y.~ \exists z.~(z = \{x,y\}). \] \end{axiom} \begin{remark} Together with the axiom of pairing, the axiom of foundation implies that there can not be a set $x$ such that $x \in x$: Suppose that $x \in x$. Then $x$ is the only element of $\{x\}$, but $x \cap \{x\} \neq \emptyset$. A similar argument shows that chains like $x_0 \in x_1 \in x_2 \in x_0$ are ruled out as well. \end{remark} \begin{axiom}[\vocab{Union}] \[ \forall x.~\exists y.~(y = \bigcup x). \] \end{axiom} \begin{axiom}[\vocab{Powerset}] We write $x = \cP(y)$ for $\forall z.~(z \in x \iff x \subseteq z)$. The powerset axiom (PWA) states \[ \forall x.~\exists y.~y=\cP(x). \] \end{axiom} \begin{axiom}[\vocab{Infinity}] A set $x$ is called \vocab{inductive}, iff $\emptyset \in x \land \forall y.~(y \in x \implies y \cup \{y\} \in x)$. The axiom of infinity says that there exists and inductive set. \end{axiom} \begin{axiomschema}[\vocab{Separation}] % TODO :(Aus) Let $\phi$ be some fixed fist order formula in $\cL_\in$. Then $\text{(Aus)}_{\phi}$ states \[ \forall v_1 .~\forall v_p .~\forall a .~\exists b .~\forall x.~ (x \in b \implies x \in a \land \phi(x,v_1,v_p)) \] Let us write $b = \{x \in a | \phi(x)\}$ for $\forall x.~(x \in b \iff x \in a \land f(x))$. Then (Aus) can be formulated as \[ \forall a.~\exists b.~(b = \{x \in a; \phi(x)\}). \] \end{axiomschema} \begin{notation} \todo{$\cap, \setminus, \bigcap$} % We write $z = x \cap y$ for $\forall u.~((u \in z) \implies u \in x \land u \in y)$, % $Z = x \setminus y$ for ... % $x = \bigcap y$ for ... \end{notation} \begin{remark} (Aus) proves that \begin{itemize} \item $\forall a.~\forall b.~\exists c.~(c = a \cap b)$, \item $\forall a.~\forall b.~\exists c.~(c = a \setminus b)$, \item $\forall a.~\exists b.~(b = \bigcap a)$. \end{itemize} \end{remark} \begin{axiomschema}[\vocab{Replacement} (Fraenkel)] Let $\phi$ be some $\cL_{\in }$ formula. Then \[ \forall v_1 .~\exists b.~\forall y.~(y \in b \iff \exists x .~(x \in a \land \phi(x,y,v_1,v_p))). \] \end{axiomschema} \begin{axiom}[\vocab{Choice}] Every family of non-empty sets has a \vocab{choice set}: \begin{IEEEeqnarray*}{rCl} \forall x .~&(&\\ && ((\forall y \in x.~y \neq \emptyset) \land (\forall y \in x .~\forall y' \in x .~(y \neq y' \implies y \cap y' = \emptyset))\\ && \implies\exists z.~\forall y \in x.~\exists u.~(z \cap y = \{u\})\\ &)& \end{IEEEeqnarray*} \end{axiom} % TODO Hier weiter