\lecture{10}{}{} % Mirko Applications of induction and recursion: \begin{fact} For every set $x$ there is a transitive set $t$ such that $x \in t$. \end{fact} \begin{proof} Take $R = \in $. We want a function $F$ with domain $\omega$ such that $F(0) = \{x\}$ and $F(n+1) = \bigcup F(n)$. Once we have such a function, $\{x\} \cup \bigcup \ran(F)$ is a set as desired. \todo{insert formal application of recursion theorem} \end{proof} \begin{notation} Let $\OR$ denote the class of all ordinals and $V$ the class of all sets. \end{notation} \begin{lemma} There is a function $F\colon \OR \to V$ such that $F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$. \end{lemma} \begin{proof} \todo{TODO} \end{proof} \begin{notation} Usually, one write $V_\alpha$ for $F(\alpha)$. They are called the \vocab{rank initial segments} of $V$. \end{notation} \begin{lemma} If $x$ is any set, then there is some $\alpha \in \OR$ such that $x \in V_\alpha$, i.e.~$V = \bigcup \{V_{\alpha} : \alpha \in \OR\}$. \end{lemma}