\tutorial{02}{}{} \subsection{Exercise 1} (Cantor-Bendixson Derrivative) For $A \subseteq \R$ Let $A^{(0)} \coloneqq A$, $A^{(\alpha+1)} \coloneqq \left( A^{(\alpha)}' \right)$ and $A^{(\lambda)} \coloneqq \bigcap_{\alpha < \lambda} A^{(\alpha)}$. We want to find $A_i$ such that $A_i^{(i)} = \emptyset$, but $A_i^{(j)} \neq \emptyset$ for all $j < i$. Let $A_1 = \{0\}$, $A_2 = \{0\} \cup \{\frac{1}{n+1} | n < \omega\}$ and so on (in every step add sequences contained in a gap of the previous set converging to the points of the previous set): Define intervals: For all $x \in A_n \setminus \{\max A_n\}$ let $\epsilon_{x,n} \coloneqq \min \{y \in A_n | y > x\} - x$ and let $I_x^{n} \coloneqq (x, \epsilon_{x,n} + x)$. Construct a sequence converging to $x$, $(x_n)_{n < \omega}$, where $x +\frac{\epsilon_{x,n}}{n+2}$. This yields $A_n$ for every $n < \omega$, such that $A_n^\left( 1 \right) = A_{n-1}$, by setting \[ A_{n+1} \coloneqq A_n \cup \bigcup_{x \in A_n \setminus \left( \bigcup_{i=1}^n I^1_{x_i} \righ))} \{(x_n)_{n < \omega} | x_n + x+\frac{\epsilon_{x,n}}{n+1}\} \] Let $A_\omega \coloneqq \bigcup_{n < \omega} A_n$. Let $A_{\omega + 1} \coloneqq \{0\} \cup \{ \frac{1}{n}A_\omega + \frac{1}{n} | n < \omega\}$ and so on.