\lecture{13}{2023-11-30}{} \gist{% \begin{remark}[``Constructive'' approach to $\omega_1$ ] There are many well-orders on $\omega$. Let $W$ be the set of all such well-orders. For $R, S \in W$, write $R \le S$ iff $R$ is isomorphic to an initial segment of $S$. Consider $\faktor{W}{\sim}$, where $R \sim S :\iff R \le S \land S \le R$. Define $\le $ on $\faktor{W}{\sim }$ by $[R] \le [S] :\iff R \le S$. Clearly this is well-defined and $<$ is a well-order on $\faktor{W}{\sim}$: Suppose that $\{R_n : n \in \omega\} \subseteq W$ is such that $R_{n+1} < R_n$. Then there exist $n_i \in \omega$ such that $R_i \cong R_0\defon{\{x : x <_{R_0} n_i\}}$ and these form a $<_{R_0}$ strictly decreasing sequence. So $(\faktor{W}{\sim})$ is a well-ordered set. Every well-order on a countable set is isomorphic to $(\omega, R)$ for some $[R] \in \faktor{W}{\sim}$. Moreover if $R \in W$, then \[ (\omega; R) \cong (\underbrace{\{[S] \in \faktor{W}{\sim} : [S] < [R]\}}_{I}; <\defon{I}), \] where the isomorphism is given by \[ n \longmapsto [R \defon{\{ m : (m,n) \in R\} }]. \] This also shows that every $[R] \in \faktor{W}{\sim }$ has only countably many $<$-predecessors. This then also shows that $(\faktor{W}{\sim}, <)$ itself is not a well-order on a countable set. Thus $\otp(\faktor{W}{\sim}, <) = \omega_1$. \end{remark} }{} \gist{% \begin{notation} Let $I \neq \emptyset$ and let $\{\kappa_i : i \in I\}$ be a set of cardinals. Then \[ \sum_{i \in I} \kappa_i \coloneqq \left|\bigcup_{ i \in I} (\kappa_i \times \{i\})\right| \] and \[ \prod_{i \in I} \coloneqq \left| \bigtimes_{i \in I} \kappa_i\right|, \] where \[ \bigtimes_{i \in I} A_i \coloneqq \{f : f \text{ is a function}, \dom(f) = I, \forall i.~f(i) \in A_i\}. \] \end{notation} \begin{remark} \AxC is equivalent to $\forall i \in I.~A_i \neq \emptyset \implies \bigtimes_{i \in I} A_i \neq \emptyset$. \end{remark} }{} \begin{theorem}[K\H{o}nig] \yalabel{K\H{o}nig's Theorem}{K\H{o}nig}{thm:koenig} Let $I \neq \emptyset$. Let $\{\kappa_i : i \in I\}$, $\{\lambda_i : i \in I\}$ be sets of cardinals such that $\kappa_i < \lambda_i$ for all $i \in I$. Then \[ \sum_{i \in I} \kappa_i < \prod_{i \in I} \lambda_i. \] \end{theorem} \begin{proof} \gist{% Consider a function $F\colon \bigcup_{i \in I} (\kappa_i \times \{i\}) \to \bigtimes_{i \in I}\lambda_i$. We want to show that $F$ is not surjective. For $i \in I$, let $\xi_i$ be the least $\xi < \lambda_i$ such that for all $\eta < \kappa_i$ \[ \underbrace{F((\eta, i))(i)}_{\in \lambda_i} \neq \xi. \] Such $\xi$ exists, since $\kappa_i < \lambda_i$. Let $f \in \bigtimes_{i \in I} \lambda_i$ be defined by $i \mapsto \xi_i$. Then $f \not\in \ran(F)$. }{% \begin{itemize} \item Consider $F\colon \bigcup_{i \in I}(\kappa_i \times \{i\}) \to \bigtimes_{i \in I} \lambda_i$. Want: $F$ is not surjective. \item Let $\xi_i$ minimal such that $\underbrace{F((\eta,i))(i)}_{\in \lambda_i} \neq \xi$ for all $\eta < \kappa_i$. \item $(i \mapsto \xi_i) \not\in \ran(F)$. \end{itemize} } \end{proof} \begin{corollary} \label{cor:cfpow} For infinite cardinals $\kappa$, it is $\cf(2^{\kappa}) > \kappa$. \end{corollary} \begin{proof} \gist{% If $2^{\kappa}$ is a successor cardinal, then $\cf(2^{\kappa}) = 2^{\kappa} > \kappa$, since successor cardinals are regular. Suppose $\cf(2^{\kappa}) \le \kappa$ is a limit cardinal. Then there is some cofinal $f\colon \kappa\to 2^{\kappa}$. Write $\kappa_i = f(i)$ (replacing $f(i)$ by $|f(i)|^{+}$ we may assume that every $\kappa_i$ is a cardinal). For $i \in \kappa$, write $\lambda_i = 2^{\kappa}$. By \yaref{thm:koenig}, \[ \sup \{\kappa_i : i < \kappa\} \le \sum_{i \in \kappa} \kappa_i < \prod_{i \in \kappa} \lambda_i = \left( 2^{\kappa} \right)^{\kappa} = 2^{\kappa \cdot \kappa} = 2^{\kappa} \] and $f$ is not cofinal. }{% \begin{itemize} \item Trivial for successors ($\cf(2^{\kappa}) \overset{\text{regular}}{=} 2^{\kappa} > \kappa$). \item Suppose $2^\kappa$ is a limit, $\exists f\colon \kappa \to 2^{\kappa}$ cofinal. Wlog.~$f(i) \in \Card$. But \[ \sup \{f(i)) : i < \kappa\} \le \sum_{i \in \kappa} f(i) \overset{\yaref{thm:koenig}}{<} \prod_{i \in \kappa} 2^{\kappa} = (2^{\kappa})^{\kappa} = 2^{\kappa}. ~ ~\qedhere \] \end{itemize} } \end{proof} \begin{fact} Properties of the function $\kappa \mapsto 2^{\kappa}$. \begin{itemize} \item $\mu < \kappa \implies 2^{\mu} \le 2^{\kappa}$ (it is independent of $\ZFC$ whether or not this is strictly increasing). \item $\cf(2^{\kappa}) \ge \kappa^+$. \end{itemize} This is ``all'' you can prove in $\ZFC$. \end{fact} The next goal is to show the following: (However the method might be more interesting than the result) \begin{theorem}[Silver] \yalabel{Silver's Theorem (case of $\aleph_{\omega_1}$)}{Silver ($\aleph_{\omega_{1}}$)}{thm:silver1} If $2^{\aleph_\alpha} = \aleph_{\alpha + 1}$ for all $\alpha < \omega_1$, then $2^{\aleph_{\omega_1}} = \aleph_{\omega_1 + 1}$. \end{theorem} Relevant concepts to prove this theorem: \begin{definition} Let $\alpha$ be a limit ordinal. \begin{itemize} \item We say that $A \subseteq \alpha$ is \vocab{unbounded} (in $\alpha$), iff for all $\beta < \alpha$, there is some $\gamma \in A$ such that $\beta < \gamma$. \item We say that $A \subseteq \alpha$ is \vocab{closed}, iff it is closed with respect to the order topology on $\alpha$, i.e.~for all $\beta < \alpha$, \[ \sup(A \cap \beta) \in A \cup \{0\} . \] \item $A$ is \vocab{club} (\emph{cl}osed \emph{un}bounded) iff it is closed and unbounded. \end{itemize} \end{definition} The interesting case is that $\alpha$ is a regular uncountable cardinal. \begin{fact} $A \subseteq \alpha$ being unbounded is equivalent to $f\colon \beta\to \alpha$ being cofinal, where $(\beta, \in ) \overset{f}{\cong} (A, \in )$. \end{fact}