\lecture{10}{}{} % Mirko \subsubsection{Applications of induction and recursion} \begin{fact} For every set $x$ there is a transitive set $t$ such that $x \in t$. \end{fact} \begin{proof} \gist{% Take $R = \in $. We want a function $F$ with domain $\omega$ such that $F(0) = \{x\}$ and $F(n+1) = \bigcup F(n)$. Once we have such a function, $\{x\} \cup \bigcup \ran(F)$ is a set as desired. To get this $F$ using the \yaref{thm:recursion}, pick $D$ such that \[ (\emptyset, 0, \{x\}) \in D \] and \[ (f, n+1, \bigcup\bigcup \ran(f)) \in D. \] The \yaref{thm:recursion} then gives a function such that \begin{IEEEeqnarray*}{rCl} F(0) &=& \{x\},\\ F(n+1) &=& \bigcup\bigcup \ran(F\defon{n+1})\\ &=& \bigcup \bigcup \{\{x\}, x, \bigcup x, \ldots, \underbrace{\bigcup\nolimits^{n-1} x}_{F(n)}\} = \bigcup F(n), \end{IEEEeqnarray*} i.e.~$F(n+1) = \bigcup F(n)$. }{% \begin{itemize} \item Use recursion ($\in $) to define $F\colon \omega \to V$ such that \[ F(0) = \{x\}, F(n+1) = \bigcup F(n). \] \item $\{x\} \cup \bigcup \ran(F)$ is as desired. \end{itemize} } \end{proof} \gist{% \begin{notation} Let $\OR$ denote the class of all ordinals and $V$ the class of all sets. \end{notation} }{} \begin{lemma} There is a function $F\colon \OR \to V$ such that \gist{$F(\alpha) = \bigcup \{\cP(F(\beta)): \beta < \alpha\}$.}{% $F(\alpha) = \bigcup_{\beta < \alpha} \cP(F(\beta))$. } \gist{}{% $F(\alpha)$ is denoted by $V_\alpha$. These are called the \vocab{rank initial segments} of $V$. } \end{lemma} \begin{proof} Use the \yaref{thm:recursion} with $R = \in $ and $(w,x,y) \in D$ iff \[ y = \bigcup \{\cP(\overline{y}) : \overline{y} \in \ran(w)\}. \] \gist{% This function has the following properties: \begin{IEEEeqnarray*}{rCl} F(0) &=& \bigcup \emptyset = \emptyset,\\ F(1) &=& \bigcup \{\cP(\emptyset)\} = \bigcup \{\{\emptyset\} \} = \{\emptyset\},\\ F(2) &=& \bigcup \{\cP(\emptyset), \cP(\{\emptyset\})\} = \bigcup \{\{\emptyset\}, \{\emptyset, \{\emptyset\} \} \} = \{\emptyset, \{\emptyset\} \},\\ \ldots \end{IEEEeqnarray*} }{} It is easy to prove by induction: \begin{enumerate}[(a)] \item Every $F(\alpha)$ is transitive. \item $F(\alpha) \subseteq F(\beta)$ for all $\alpha \le \beta$. \item $F(\alpha+1) = \cP(F(\alpha))$ for all $\alpha \in \OR$. \item $F(\lambda) = \bigcup \{F(\beta) :\beta < \lambda\}$ for $\lambda \in \OR$ a limit. \end{enumerate} \end{proof} \gist{% \begin{notation} Usually, one writes $V_\alpha$ for $F(\alpha)$. They are called the \vocab{rank initial segments} of $V$. \end{notation} }{} \begin{lemma} \gist{% If $x$ is any set, then there is some $\alpha \in \OR$ such that $x \in V_\alpha$, i.e.~$V = \bigcup \{V_{\alpha} : \alpha \in \OR\}$. }{ $V = \bigcup_{\alpha \in \OR} V_\alpha$. } \end{lemma} \begin{proof} \gist{% We use induction on the well-founded $\in$-relation. Let $A = \bigcup \{V_\alpha : \alpha \in \OR\}$. We need to show that $A = V$. By induction it suffices to prove that for every $x \in V$, if $\{y : y \in x\} \subseteq A$, then $x \in A$. The hypothesis says that for all $y \in x$, there is some $\alpha$ with $y \in V_\alpha$. Write $\alpha_y$ for the least such $\alpha$. By \AxRep, $\{\alpha_y : y \in x\}$ is a set and we may let $\alpha = \sup \{\alpha_y : y \in x\} \ge \alpha_y$ for all $y \in x$. Then $y \in V_{\alpha_y} \subseteq V_\alpha$ for all $y \in x$. In other words $x \subseteq V_\alpha$, hence $x \in V_{\alpha+1}$. }{Induction on $\in$.} \end{proof} \begin{lemma}[\vocab{Transitive collapse}/\vocab{Mostowski collapse}] \yalabel{Mostowski Collapse}{Mostowski}{lem:mostowski} Let $R$ be a binary set-like relation on a class $A$. Then $R$ is well-founded iff there is a transitive class $B$ such that \[ (B, \in\defon{B}) \cong (A, R), \] i.e.~there is an isomorphism $F$, that is a function $F\colon B \to A$ with $x \in y \iff (F(x),F(y)) \in R$ for $x,y \in B$. \end{lemma} \begin{proof} ``$\impliedby$'' \gist{% Suppose that $R$ is ill-founded (i.e.~not well-founded). Then there is some $(y_n : n < \omega)$ such that $y_n \in A$ and $(y_{n+1}, y_n) \in R$ for all $n < \omega$. But then if $F$ is an isomorphism as above, \[ F^{-1}(Y_{n+1}) \in F^{-1}(Y_n) \] for all $n < \omega$ $\lightning$ }{% Trivial, since $\in$ is well-founded. } ``$\implies$ '' \gist{% Suppose that $R$ is well-founded. We want a transitive class $B$ and a function $F\colon B \leftrightarrow A$ such that \[ x \in y \iff (F(x), F(y)) \in R. \] Equivalently $G\colon A \leftrightarrow B$ with $(x,y) \in R$ iff $G(x) \in G(y)$ for all $x,y \in A$. In other words, $G(y) = \{G(x) : (x,y) \in R\}$. Such a function $G$ and class $B$ exist by the \yaref{thm:recursion}. }{Use recursion to define $F(y) \coloneqq \{F(x) : (x,y) \in R\}$.} \end{proof} As a consequence of the \yaref{lem:mostowski}, we get that if $<$ is a well-order on a set $a$ then there is some transitive set $b$ with $(b, \in\defon{b}) \cong (a, <)$. \begin{lemma}[\vocab{Rank function}] Let $R$ be a well-founded and set-like binary relation on a class $A$. Then there is a function $F\colon A \to \OR$, such that for all $x,y \in A$ \[(x,y) \in R \implies F(x) < F(y).\] \end{lemma} \begin{proof} By the \yaref{thm:recursion}, there is $F$ such that \[ F(y) = \sup \{F(x) + 1 : (x,y) \in R\}. \] This function is as desired. \end{proof} This does not skip any ordinals, as $F(y)$ is the least ordinal $> F(x)$ for all $(x,y) \in R$. Thus $\ran(F)$ is transitive. So either $\ran(F) = \OR$ or $\ran(F) \in \OR$. This $F$ is called the \vocab{rank function} for $(A, R)$. \begin{notation} \[ \rk_R(x) = \|x\|_R \coloneqq F(x), \] and \[ \rank(R) \coloneqq \ran(F). \] In the special case that $R$ is a linear order on $A$, hence a well-order, $\rank(R)$ is called the \vocab{order type} of $R$ (or of $(A,R)$), written $\otp(R)$. \end{notation}