\lecture{06}{2023-11-06}{} \begin{theorem}[Zorn] \yalabel{Zorn's Lemma}{Zorn}{thm:zorn} Let $(a, \le )$ be a partial order with $a \neq \emptyset$. Assume that for all $b \subseteq a$ with $b \neq \emptyset$ and $ b$ linearly ordered, $b$ has an upper bound. Then $a$ has a maximal element. \end{theorem} \begin{yarefproof}{thm:zorn} \gist{% Fix $(a, \le )$ as in the hypothesis. Let $A \coloneqq \{ \{(b,x) : x \in b\} : b \subseteq a, b \neq \emptyset\}$. Note that $A$ is a set (use separation on $\cP(\cP(a) \times \bigcup \cP(a))$). Note further that if $b_1 \neq b_2$, then $\{(b_1, x) : x \in b_1\} $ and $\{(b_2, x) : x \in b_2\}$ are disjoint. Hence the \yaref{ax:c} gives us a choice function $f$ on $A$, i.e.~$\forall b \in \cP(a) \setminus \{\emptyset\} .~(f(b) \in b)$. Now define a binary relation $\le^\ast$: We let $W$ denote the set of all well-orderings $\le'$ of subsets $b \subseteq a$, such that for all $u,v \in b$ if $u \le' v$ then $u \le v$ and for all $u \in b$ and \[ B_u^{\le'} \coloneqq \{ w \in a : w \text{ is an $\le$-upper bound of $\{v \in b : v \le' u\}$}\} \] then $B_u^{\le'} \neq \emptyset$ and $f(B^{\le'}_u) = u$. \begin{claim} If $\le', \le'' \in W$, then $\le' \subseteq \le''$ or $\le'' \subseteq \le'$. \end{claim} \begin{subproof} Let $\le' \in W$ be a well-ordering of $b \subseteq a$ and let $\le'' \in W$ be a well-ordering on $c \subseteq a$. We know that wlog.~$(b, \le') \cong (c, \le'')$ or $\exists v \in c .~(b, \le') \cong (c, \le'')\defon{v}$. Let $g\colon b \to c$ or $g\colon b \to c\defon{v}$ be a witness. We want to show that $g = \id$. Suppose that $g \neq \id$. Let $u_0 \in b$ be $\le'$-minimal such that $g(u_0) \neq u_0$. Writing $\overline{g} \coloneqq g\defon{\{w \in b: w <' u_0\}}$, then $(b, \le ')\defon{u_0} \cong (c, \le'') \defon{g(u_0)}$ and $\overline{g}$ is in fact the identity on $\{w \in b | w \le' u_0\}$ but this means $\{w \in b | w <' u_0\} = \{w \in c | w <'' g(u_0)\}$ and $B_{u_0}^{\le'} = B_{g(u_0)}^{\le''} \neq \emptyset$. Then $u_0 = f(B_{u_0}^{\le'}) = f(B_{g(u_0)}^{\le''}) = g(u_0)$. Thus $g$ is the identity. \end{subproof} Given the claim, we can now see that $\bigcup W$ is a well-order $\le^{\ast\ast}$ of $a$. Let $B = \{w \in a | w \text{ is a $\le$-upper bound of $b$}\}$ (this is not empty by the hypothesis). Suppose that $b$ does not have a maximum. Then $B \cap b = \emptyset$. Now $f(B) = u_0$ and let \[ \le^{\ast\ast} = \le^{\ast} \cup \{(u,u_0) | u \in b\} \cup \{(u_0,u_0)\}. \] Then $B = B_{u_0}^{\le^{\ast\ast}}$. So $\le^{\ast\ast} \in W$, but now $u_0 \in b$. So $b$ must have a maximum. \todo{Why does this prove the lemma?} }{ \begin{itemize} \item $A \coloneqq \{\{(b,x) : x \in b\}, b \subseteq a, b \neq \emptyset\}$. \item \AxC $\leadsto$ choice function on $A$, $f\colon \cP(a) \setminus \{\emptyset\} \to a$, $f(b) \in b$. \item $\le^\ast$ on $a$: \begin{itemize} \item $W \coloneqq \{\le' \text{wo on} b \subseteq a : \forall u,b \in b.~u \le' v \implies u \le v, B_u^{\le '} \neq \emptyset, u = f(B^{\le '}_u)\}$ where \item $B_u^{\le'} = \{w \in a : w \text{ $\le $-upper bound of } \{v \in b : v <' u\} \}$. \end{itemize} \item $\le', \le '' \in W \implies \le' \substack{\subseteq\\\supseteq} \le''$: \begin{itemize} \item $(b, \le') \overset{g}{\cong} (c, \le'') (\defon{v})$. \item $g = \id_b$: \begin{itemize} \item $u_0$ $\le'$ minimal with $g(u_0) \neq u_0$. \item $\{w \in b : w <' u_0\} \overset{g \defon{\ldots}}{=} \{w \in c : w <'' g(u_0)\}$. \item $B^{\le '}_{u_0} = B_{g(u_0)}^{\le ''} \neq \emptyset$, so $u_0 = f(B^{\le '}_{u_0}) = f(B^{\le ''}_{g(u_0)}) = g(u_0) \lightning$ \end{itemize} \end{itemize} \item $\le^\ast \coloneqq \bigcup W$ is wo on $b \subseteq a$. \item Suppose $b$ has no maximum. Then $B \cap b = \emptyset$. \item $u_0 \coloneqq f(B)$, $\le^{\ast\ast} = \le^\ast \cup \{(u,u_0) | u \in b\} \cup \{(u_0,u_0)\}$. \item $B = B_{u_0}^{\le^{\ast\ast}}$, so $\le^{\ast\ast} \in W$, but $u_0 \in b \lightning$. ? \end{itemize} } \end{yarefproof} \begin{remark} Over $\ZF$ the \yaref{ax:c} and \yaref{thm:zorn} are equivalent. \end{remark} \begin{corollary}[Hausdorff's maximality principle] Let $a \neq \emptyset$. Let $A \subseteq \cP(a)$ be such that $\forall B \subseteq A$, if $x \subseteq y \lor y \subseteq x$ for all $x,y \in B$, then there is some $z \in A$ such that $x \subseteq z$ for all $x \in B$. Then $A$ contains a $\subseteq$-maximal element. \end{corollary} \gist{% \begin{remark}[Cultural enrichment] Other assertions which are equivalent to the \yaref{ax:c}: \begin{itemize} \item Every infinite family of non-empty sets $\langle a_i : i \in I \rangle$ has non-empty product, i.e. \[ \prod_{i \in I} a_i \neq \emptyset.%\footnote{This is clearly true.} \] \item Every set can be well-ordered.%\footnote{This is clearly false.} \end{itemize} \end{remark} }{} % \begin{remark} % The axiom of choice is true. % \end{remark} \pagebreak \subsection{The Ordinals} \gist{ \begin{goal} We want to define nice representatives of the equivalence classes of well-orders. % TODO theorem \end{goal} Recall that \AxInf states the existence of an inductive set $x$. We can hence form the smallest inductive set \[ \omega \coloneqq \bigcap \{ x : x \text{ is inductive}\} \] Note that $\omega$ exists, as it is a subset of the inductive set given by \AxInf. We call $\omega$ the set of \vocab{natural numbers}. }{} \begin{notation} We write $0$ for $\emptyset$, and $y + 1$ for $y \cup \{y\}$. \end{notation} With this notation the \AxInf is equivalent to \[ \exists x_0.~(0 \in x_0 \land \forall n. ~(n \in x_0 \implies n+1 \in x_0)). \] We have the following principle of induction: \begin{lemma} \yalabel{Induction}{Induction}{lem:induction} Let $A \subseteq \omega$ such that $0 \in A$ and for each $y \in A$, we have that $y + 1 \in A$. Then $A = \omega$. \end{lemma} \begin{proof} Clearly $A$ is an inductive set, hence $\omega \subseteq A$. \end{proof} \begin{definition} A set $x$ is \vocab{transitive}, iff $\forall y \in x.~y \subseteq x$. \end{definition} \begin{definition} A set $x$ is called an \vocab{ordinal} (or \vocab{ordinal number}) iff $x$ is transitive and for all $y, z \in x$, we have that $y = z$, $y \in z$ or $y \ni z$. \end{definition} \gist{ Clearly, the $\in$-relation is a well-order on an ordinal $x$. \begin{remark} This definition is due to \textsc{John von Neumann}. \end{remark} }{} \begin{lemma} Each natural number (i.e.~element of $\omega$) is an ordinal. \end{lemma} \begin{proof} \gist{ We use \yaref{lem:induction}. Clearly $\emptyset$ is an ordinal. Now let $\alpha$ be an ordinal. We need to show that $\alpha + 1$ is an ordinal. It is transitive, since $\alpha$ is transitive and $\alpha \subseteq (\alpha + 1)$. Let $x, y \in (\alpha+1)$. If $x, y \in \alpha$, we know that $x = y \lor x \in y \lor x \ni y$ since $\alpha$ is an ordinal. Suppose $x = \alpha$. Then either $y = x$ or $y \in \alpha = x$. }{Induction} \end{proof} \begin{lemma} $\omega$ is an ordinal. \end{lemma} \begin{proof} $\omega$ is transitive: Let $y \in \omega$. Let us show by \yaref{lem:induction}, that $y \subseteq \omega$. For $y = \emptyset$ this is clear. Suppose that $y \in \omega$ with $y \subseteq \omega$. But now $\{y\} \subseteq \omega$, so $y + 1 = y \cup \{y\} \subseteq \omega$. $\omega$ is well-ordered by $\in$: We do a nested induction. First let \[ \phi(y,z) \coloneqq y \in z \lor y \ni z \lor y = z. \] We want to show: \begin{enumerate}[(a)] \item $\phi(0,0)$ \item $\forall z \in \omega. ~\phi(0, z) \implies \phi(0,z+1)$. \item $\forall y \in \omega.~((\forall z' \in \omega.~\phi(y,z')) \implies (\forall z \in \omega.~\phi(y+1, z)))$. \end{enumerate} (a) and (b) are trivial. Fix $y \in \omega$ and suppose that $\forall z' \in \omega .~\phi(y, z')$. We want to show that $\forall z \in \omega .~\phi(y+1, z)$. We already know that $\forall z \in \omega.~\phi(0,z)$ holds by (b). In particular, $\phi(0,y+1)$ holds, so $\phi(y+1, 0)$ is true, since $\phi$ is symmetric. Now if $\phi(y+1,z)$ is true, we want to show $\phi(y+1,z+1)$ is true as well. We have \[(y + 1 \in z) \lor (y + 1 = z) \lor (y + 1 \ni z)\] by assumption. \begin{itemize} \item If $y + 1 \in z \lor y+1 = z$, then clearly $y + 1 \in z + 1$. \item If $y +1 \ni z$, then either $z = y$ or $z \in y$. \begin{itemize} \item In the first case, $z+1 = y+1$. \item Suppose that $z \in y$. Then by the induction hypothesis $\phi(y, z+1)$ holds. If $y \in z+1$, then $\{y,z\}$ would violate \AxFund. If $y = z+1$, then $z + 1 \in y + 1$. If $z+1 \in y$, then $z+1 \in y+1$ as well. \end{itemize} \end{itemize} \end{proof}