\lecture{03}{2023-10–23}{Cantor-Bendixson} \begin{theorem}[Cantor-Bendixson] \yalabel{Cantor-Bendixson}{Cantor-Bendixson}{thm:cantorbendixson} If $A \subseteq \R$ is closed, it is either at most countable or else $A$ contains a perfect set. \end{theorem} \begin{corollary} If $A \subseteq \R$ is closed, then either $A \le \N$ or $A \sim \R$. \end{corollary} \begin{fact} $A' = \{x \in \R | \forall a < x < b.~ (a,b) \cap A \text{ is at least countable}\}$. \end{fact} \begin{proof} $\supseteq$ is clear. For $\subseteq $, fix $a < x < b$ and let us define $(y_n: n \in \omega)$ as well as $((a_n, b_n): n \in \omega)$. Set $a_0 \coloneqq a$, $b_0 \coloneqq b$. Having defined $(a_n, b_n)$, pick $x \neq y_n \in A \cap (a_n, b_n)$, Then pick $a_n < a_{n+1} < x < b_{n+1} < b_n$ such that $y_n \not\in (a_{n+1}, b_{n+1})$. Clearly $y_n \neq y_{n+1}$, hence $\{y_n : n \in \N\}$ is a countable subset of $A \cap (a,b)$. \end{proof} \begin{definition} Let $A \subseteq \R$. We say that $x \in \R$ is a \vocab{condensation point} of $A$ iff for all $a < x < b$, $(a,b) \cap A$ is uncountable. \end{definition} By the fact we just proved, all condensation points are accumulation points. \begin{yarefproof}{thm:cantorbendixson} Fix $A \subseteq \R$ closed. We want to see that $A$ is at most countable or there is some perfect $P \subseteq A$. Let \[P \coloneqq \{x \in \R | x \text{ is a condensation point of $A$}\}.\] Since $A $ is closed, $P \subseteq A$. \begin{claim} $A \setminus P$ is at most countable. \end{claim} \begin{subproof} For each $x \in A \setminus P$, there is $a_x < x < b_x$ such that $(a_x, b_x) \cap A$ is at most countable. Since $\Q$ is dense in $\R$, we may assume that $a_x, b_x \in \Q$. Then \begin{IEEEeqnarray*}{rCl} A \setminus P &=& \bigcup_{x \in A \setminus P} (a_x, b_x) \cap A. \end{IEEEeqnarray*} $\subseteq $ holds by the choice of $a_x$ and $b_x$. For $\supseteq$ let $y$ be an element of the RHS. Then $y \in (a_{x_0}, b_{x_0}) \cap A$ for some $x_0$. As $(a_{x_0}, b_{x_0}) \cap A$ is at most countable, $y \not\in P$. Now we have that $A \setminus P$ is a union of at most countably many sets, each of which is at most countable. \end{subproof} \begin{claim} If $P \neq \emptyset$, the $P$ is perfect. \end{claim} \begin{subproof} $P \neq \emptyset$: $\checkmark$ $P \subseteq P'$: % \begin{IEEEeqnarray*}{rCl} % P &=& \{x \in A | \text{every open neighbourhood of $x$ is uncountable}\}\\ % &\subseteq & \{x \in A | \text{every open neighbourhood of $x$ is at least countable}\} = P'. % \end{IEEEeqnarray*} Let $x \in P$. Let $a < x < b$. We need to show that there is some $y \in (a,b) \cap P \setminus \{x\}$. Suppose that for all $y \in (a,b) \setminus \{x\}$ there is some $a_y < y < b_y$ with $(a_y, b_y) \cap A$ being at most countable. Wlog.~$a_y, b_y \in \Q$. Then \[ (a,b) \cap A = \{x \} \cup \bigcup_{\substack{y \in (a,b)\\y \neq x}} [(a_y, b_y) \cap A]. \] But then $(a,b) \cap A$ is at most countable contradicting $ x \in P$. $P' \subseteq P$ (i.e.~$P$ is closed): Let $x \in P'$. Then for $a < x < b$ the set $(a,b) \cap P$ always has a member $y$ such that $y \neq x$. Since $y \in P$, we get that $(a,b) \cap A$ in uncountable, hence $x \in P$. \end{subproof} But now \[ A = \overbrace{P}^{\mathclap{\text{perfect, unless $= \emptyset$}}} \cup \underbrace{(A \setminus P)}_{\mathclap{\text{at most countable}}}. \] \end{yarefproof} \gist{\todo{Alternative proof of Cantor-Bendixson}}{} % \begin{remark} % There is an alternative proof of Cantor-Bendixson, going as follows: % Fix $A \subseteq \R$ closed. % Define a sequence % \[ % A \supseteq A' \supseteq A'' \supseteq \ldots \supseteq \bigcap_{n} A^{(n)} % \supseteq \left( \bigcap_{n} A^{(n)} \right)' \supseteq \ldots % \] % Then $A \setminus A'$ has at most countably many points. % For all $a \in A \setminus A'$ % pick $\Q\ni a_x < x < b_x \in \Q$ % such that $(a_x, b_x) \cap A = \{x\}$. % Then $A \setminus A' = \bigcup_{x \in A \setminus A'} [(a_x, b_x) \cap A]$ % is at most countable. % Also $A'$ is closed. % \end{remark}