\lecture{01}{2023-10-16}{} \gist{% \paragraph{Literature} \begin{itemize} \item Schindler, Set theory \item K. Kunen \item T.~Jech \item A.~Kanamori, The higher infinite \end{itemize} \section*{Outline} \begin{itemize} \item Set theory \begin{itemize} \item Naive set theory \item $\ZFC$ \item Ordinals and Cardinals \item Models of set theory (in particular forcing) \item Independence of $\CH$. \end{itemize} \end{itemize} }{} \section{Naive set theory} \begin{definition} Let $A \neq \emptyset$, $B$ be arbitrary sets. We write $A \le B$ ($A$ is not bigger than $B$) iff there is an injection $f\colon A \hookrightarrow B$. \end{definition} \begin{lemma} If $A \le B$, then there is a surjection $g\colon B \twoheadrightarrow A$. \end{lemma} \begin{proof} Fix $f\colon A \hookrightarrow B$. If $f$ is also surjective, then $f^{-1}\colon B \to A$ is also a bijection. Otherwise define $g$ by choosing an arbitrary $x_0 \in B$ and let \[ g(y) \coloneqq \begin{cases} x &: f(x) = y,\\ x_0 &: \text{if there is no such $x$}. \end{cases}. \] \end{proof} \begin{lemma} If there is a surjection $f\colon A \twoheadrightarrow B$, then $B \le A$. \end{lemma} \begin{proof} For every $x \in B$ choose one of its preimages under $f$. This is basically equivalent to $\AC$. \end{proof} \begin{definition} For sets $A$, $B$ write $A < B$ iff $A \le B \land B \not\le A$. \end{definition} \begin{theorem}[Cantor] $\N < \R$. \end{theorem} \begin{proof}[Cantor's original proof] Clearly $\N \le \R$. Take some function $f\colon \N \to \R$ Define a sequence $([a_n, b_n], n \in \N)$ of nonempty closed nested intervals, i.e.~$a_n \le a_{n+1} < b_{n+1} \le b_n$ as follows: Set $a_0 \coloneqq 0$, $b_0 \coloneqq 1$, and $a_{n+1}$, $b_{n+1}$ such that $x_n \notin [a_{n+1}, b_{n+1}]$. Then $\bigcap_{n \in \N} [a_n, b_n] \neq \emptyset$ since $\R$ is complete. Thus $f$ is not surjective. \end{proof} \begin{notation} For a set $A$, $\bP(A)$ denotes the \vocab{power set} of $A$, i.e.~the set of all subsets of $A$. \end{notation} \begin{theorem} For all sets $A$, $A < \bP(A)$. \end{theorem} \begin{proof} Clearly $A \le \bP(A)$ since $A \ni a \mapsto \{a\} \in \bP(A)$ is an injection. Let $f\colon A \to \bP(A)$, we want to show that this is not surjective. Let $c \coloneqq \{x \in A | x \not\in f(x)\} \in \bP(A)$. Suppose that $f(x_0) = c$. Then both $x_0 \in c$ and $x_0 \not\in c$ lead to a contradiction. \end{proof} \begin{definition} For sets $A$, $B$ write $A \sim B$ for $A \le B$ and $B \le A$. \end{definition} \begin{theorem}[Schröder-Bernstein] Let $A$, $B$ be any sets. If $A \sim B$, there is a bijection $h\colon A \to B$. \end{theorem} \begin{proof} \gist{% Let $f\colon A \hookrightarrow B$ and $g\colon B \hookrightarrow A$ be injective. We need to define a bijection $h\colon A \to B$. For each $x \in A$ we define $N(x) \in \N \cup \{\infty\}$ and the maximal ``preimage sequence'' $(x_n : n < N(x))$ as follows: $x_0 \coloneqq x$, if $n + 1 < N$ and $n$ is even, then $x_n\coloneqq g(x_{n+1})$, if it is odd, $x_n \coloneqq f(x_{n+1})$ and either $N = \infty$ or $x_{N-1}$ has no preimage under $f$ if $N-1$ is even, resp.~$g$ if $N-1$ is odd. Similarly for each $y \in B$ an $M = M(y) \in \N \cup \{\infty\}$ and the maximal preimage sequence $(y_n : n < M)$ can be defined. Let $A^{\text{odd}} \coloneqq \{x \in A : N(x) \text{ is an odd natural number}\}$, $A^{\text{even}} \coloneqq \{x \in A : N(x) \text{ is an even natural number}\}$, $A^{\infty} \coloneqq \{x \in A : N(x) = \infty\}$ and similarly for $B$. Now define \begin{IEEEeqnarray*}{rCl} h\colon A &\longrightarrow & B \\ x &\longmapsto & \begin{cases} f(x) &: x \in A^{\text{odd}} \cup A^{\infty},\\ g^{-1}(x) &: x \in A^{\text{even}}. \end{cases} \end{IEEEeqnarray*} It is clear that this is bijective. \todo{missing picture $f(A^{\text{odd}}) \subseteq B^{\text{even}}$, $f(A^\infty) = B^\infty$}. }{Preimage sequence} \end{proof} \begin{definition} The \vocab{continuum hypothesis} ($\CH$) says that there is no set $A$ such that $\N < A < \R$, i.e.~every uncountable subset $A \subseteq \R$ is in bijection with $\R$. $\CH$ is equivalent to the statement that there is no set $A \subset \R$ which is uncountable ($\N < A$) and there is no bijection $A \leftrightarrow \R$. \end{definition} What we'll do next: Define open and closed subsets of $\R$. Show $\CH$ for open and closed sets.